首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucoamylase 1 (GA1) from Aspergillus niger is a multidomain starch hydrolysing enzyme that consists of a catalytic domain and a starch-binding domain connected by an O-glycosylated linker. The fungus also produces a truncated form without the starch-binding domain (GA2). The active site mutant Trp(52)-->Phe of both forms and the Asp(55)-->Val mutant of the GA1 form have been prepared and physicochemically characterised and compared to recombinant wild-type enzymes. The characterisation included substrate hydrolysis, inhibitor binding, denaturant stability, and thermal stability, and the consequences for the active site of glucoamylase are discussed. The circular dichroic (CD) spectra of the mutants were very similar to the wild-type enzymes, indicating that they have similar tertiary structures. The D55V GA1 mutant showed slower kinetics of hydrolysis of maltose and maltoheptaose with delta delta G(double dagger) congruent with 22 kJ mol(-1), whereas the binding of the strong inhibitor acarbose was greatly diminished by delta delta G degrees congruent with 52 kJ mol(-1). Both W52F mutant forms have almost the same stability as the wild-type enzyme, whereas the D55V GA1 mutant showed slight destabilisation both towards denaturant and heat (DSC). The difference between the CD unfolding curves recorded by near- and far-UV indicated that D55V GA1 unfolds through a molten globule intermediate.  相似文献   

2.
We constructed two types of chimeric enzymes, Ch1 Amy and Ch2 Amy. Ch1 Amy consisted of a catalytic domain of Bacillus subtilis X-23 alpha-amylase (Ba-S) and the raw starch-binding domain (domain E) of Bacillus A2-5a cyclomaltodextrin glucanotransferase (A2-5a CGT). Ch2 Amy consisted of Ba-S and D (function unknown) plus E domains of A2-5a CGT. Ch1 Amy acquired raw starch-binding and -digesting abilities which were not present in the catalytic part (Ba-S). Furthermore, the specific activity of Ch1 Amy was almost identical when enzyme activity was evaluated on a molar basis. Although Ch2 Amy exhibited even higher raw starch-binding and -digesting abilities than Ch1 Amy, the specific activity was lower than that of Ba-S. We did not detect any differences in other enzymatic characteristics (amylolytic pattern, transglycosylation ability, effects of pH, and temperature on stability and activity) among Ba-S, Ch1 Amy, and Ch2 Amy.  相似文献   

3.
We constructed two types of chimeric enzymes, Ch1 Amy and Ch2 Amy. Ch1 Amy consisted of a catalytic domain of Bacillus subtilis X-23 α-amylase (Ba-S) and the raw starch-binding domain (domain E) of Bacillus A2-5a cyclomaltodextrin glucanotransferase (A2-5a CGT). Ch2 Amy consisted of Ba-S and D (function unknown) plus E domains of A2-5a CGT. Ch1 Amy acquired raw starch-binding and -digesting abilities which were not present in the catalytic part (Ba-S). Furthermore, the specific activity of Ch1 Amy was almost identical when enzyme activity was evaluated on a molar basis. Although Ch2 Amy exhibited even higher raw starch-binding and -digesting abilities than Ch1 Amy, the specific activity was lower than that of Ba-S. We did not detect any differences in other enzymatic characteristics (amylolytic pattern, transglycosylation ability, effects of pH, and temperature on stability and activity) among Ba-S, Ch1 Amy, and Ch2 Amy.  相似文献   

4.
The X-ray structures of complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) with an inhibitor acarbose and an inactive mutant TVAI with malto-hexaose and malto-tridecaose have been determined at 2.6, 2.0 and 1.8A resolution, and the structures have been refined to R-factors of 0.185 (R(free)=0.225), 0.184 (0.217) and 0.164 (0.200), respectively, with good chemical geometries. Acarbose binds to the catalytic site of TVAI, and interactions between acarbose and the enzyme are very similar to those found in other structure-solved alpha-amylase/acarbose complexes, supporting the proposed catalytic mechanism. Based on the structure of the TVAI/acarbose complex, the binding mode of pullulan containing alpha-(1,6) glucoside linkages could be deduced. Due to the structural difference caused by the replaced amino acid residue (Gln396 for Glu) in the catalytic site, malto-hexaose and malto-tridecaose partially bind to the catalytic site, giving a mimic of the enzyme/product complex. Besides the catalytic site, four sugar-binding sites on the molecular surface are found in these X-ray structures. Two sugar-binding sites in domain N hold the oligosaccharides with a regular helical structure of amylose, which suggests that the domain N is a starch-binding domain acting as an anchor to starch in the catalytic reaction of the enzyme. An assay of hydrolyzing activity for the raw starches confirmed that TVAI can efficiently hydrolyze raw starch.  相似文献   

5.
Lysine 356 has been implicated by protein modification studies as a fructose-2,6-bisphosphate binding site residue in the 6-phosphofructo-2-kinase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Kitajima, S., Thomas, H., and Uyeda, K. (1985) J. Biol. Chem. 260, 13995-14002). However, Lys-356 is found in the fructose-2,6-bisphosphatase domain (Bazan, F., Fletterick, R., and Pilkis, S. J. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646). In order to ascertain whether Lys-356 is involved in fructose-2,6-bisphosphatase catalysis and/or domain/domain interactions of the bifunctional enzyme, Lys-356 was mutated to Ala, expressed in Escherichia coli, and then purified to homogeneity. Circular dichroism experiments indicated that the secondary structure of the Lys-356-Ala mutant was not significantly different from that of the wild-type enzyme. The Km for fructose 2,6-bisphosphate and the Ki for the noncompetitive inhibitor, fructose 6-phosphate, for the fructose-2,6-bisphosphatase of the Lys-356-Ala mutant were 2700- and 2200-fold higher, respectively, than those of the wild-type enzyme. However, the maximal velocity and the Ki for the competitive product inhibitor, inorganic phosphate, were unchanged compared to the corresponding values of the wild-type enzyme. Furthermore, in contrast to the wild-type enzyme, which exhibits substrate inhibition, there was no inhibition by substrate of the Lys-356-Ala mutant. In the presence of saturating substrate, inorganic phosphate, which acts by relieving fructose-6-phosphate and substrate inhibition, is an activator of the bisphosphatase. The Ka for inorganic phosphate of the Lys-356-Ala mutant was 1300-fold higher than that of the wild-type enzyme. The kinetic properties of the 6-phosphofructo-2-kinase of the Lys-356-Ala mutant were essentially identical with that of the wild-type enzyme. The results demonstrate that: 1) Lys-356 is a critical residue in fructose-2,6-bisphosphatase for binding the 6-phospho group of fructose 6-phosphate/fructose 2,6-bisphosphate; 2) the fructose 6-phosphate binding site is responsible for substrate inhibition; 3) Inorganic phosphate activates fructose-2,6-bisphosphatase by competing with fructose 6-phosphate for the same site; and 4) Lys-356 is not involved in 6-phosphofructo-2-kinase substrate/product binding or catalysis.  相似文献   

6.
The starch-binding domains of glucoamylase I (SBD of GA-I) from Aspergillus awamori and of cyclodextrin glucanotransferase (domain E of CGTase) from Bacillus macerans were fused to the C-terminus of beta-galactosidase (beta-gal) The majority of the fusion proteins produced in Escherichia coli were found as inclusion bodies. Active fusion proteins were purified by partial solubilization of the inclusion bodies with 2 M urea followed by affinity chromatography. Adsorption isotherms of purified fusion proteins on corn starch and cross-linked amylose were generated. The beta-gal fusion proteins had similar affinities for cross-linked amylose and corn starch but significantly different saturation capacities on corn starch. The adsorption and elution data from the potato starch column as well as the adsorption isotherms of p-gal-domain E fusion protein (BDE109) on corn starch and cross-linked amylose demonstrated that domain E of CGTase is an independent domain, which retained its starch-binding activity when separated from the other four (A-D) domains in CGTase. (c) 1995 John Wiley & Sons Inc.  相似文献   

7.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 →Ser) and R166K (Arg 166 →Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

8.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 &#77 Ser) and R166K (Arg 166 &#77 Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

9.
Two inhibitors, acarbose and cyclodextrins (CD), were used to investigate the active site structure and function of barley alpha-amylase isozymes, AMY1 and AMY2. The hydrolysis of DP 4900-amylose, reduced (r) DP18-maltodextrin and maltoheptaose (catalysed by AMY1 and AMY2) was followed in the absence and in the presence of inhibitor. Without inhibitor, the highest activity was obtained with amylose, kcat/Km decreased 103-fold using rDP18-maltodextrin and 10(5) to 10(6)-fold using maltoheptaose as substrate. Acarbose is an uncompetitive inhibitor with inhibition constant (L1i) for amylose and maltodextrin in the micromolar range. Acarbose did not bind to the active site of the enzyme, but to a secondary site to give an abortive ESI complex. Only AMY2 has a second secondary binding site corresponding to an ESI2 complex. In contrast, acarbose is a mixed noncompetitive inhibitor of maltoheptaose hydrolysis. Consequently, in the presence of this oligosaccharide substrate, acarbose bound both to the active site and to a secondary binding site. alpha-CD inhibited the AMY1 and AMY2 catalysed hydrolysis of amylose, but was a very weak inhibitor compared to acarbose.beta- and gamma-CD are not inhibitors. These results are different from those obtained previously with PPA. However in AMY1, as already shown for amylases of animal and bacterial origin, in addition to the active site, one secondary carbohydrate binding site (s1) was necessary for activity whereas two secondary sites (s1 and s2) were required for the AMY2 activity. The first secondary site in both AMY1 and AMY2 was only functional when substrate was bound in the active site. This appears to be a general feature of the alpha-amylase family.  相似文献   

10.
The C-terminal domain of Bacillus sp. strain TS-23 -amylase (BLA) has been known to be involved in the raw starch-binding activity of the enzyme. Sequence comparison revealed that Thr-527, Trp-545, Trp-561, Lys-576, and Trp-588 in this domain are highly conserved in the aligned enzymes. To understand structure-function relationships in the starch-binding domain of BLA, site-directed mutagenesis was conducted to replace these residues with leucine or isoleucine. The overexpressed enzymes have been purified by nickel-chelate chromatography, and the molecular mass of the purified proteins was approximately 64.5 kDa. Starch-binding assay showed that the binding activities of the single-mutated enzymes were significantly reduced, while the combinational mutations did not lead to a complete loss of the activity.  相似文献   

11.
STBD1 (starch-binding domain-containing protein 1) belongs to the CBM20 (family 20 carbohydrate binding module) group of proteins, and is implicated in glycogen metabolism and autophagy. However, very little is known about its regulation or interacting partners. Here, we show that the CBM20 of STBD1 is crucial for its stability and ability to interact with glycogen-associated proteins. Mutation of a conserved tryptophan residue (W293) in this domain abolished the ability of STBD1 to bind to the carbohydrate amylose. Compared with the WT (wild-type) protein, this mutant exhibited rapid degradation that was rescued upon inhibition of the proteasome. Furthermore, STBD1 undergoes ubiquitination when expressed in COS cells, and requires the N-terminus for this process. In contrast, inhibition of autophagy did not significantly affect protein stability. In overexpression experiments, we discovered that STBD1 interacts with several glycogen-associated proteins, such as GS (glycogen synthase), GDE (glycogen debranching enzyme) and Laforin. Importantly, the W293 mutant of STBD1 was unable to do so, suggesting an additional role for the CBM20 domain in protein–protein interactions. In HepG2 hepatoma cells, overexpressed STBD1 could associate with endogenous GS. This binding increased during glycogenolysis, suggesting that glycogen is not required to bridge this interaction. Taken together, our results have uncovered new insights into the regulation and binding partners of STBD1.  相似文献   

12.
Glucoamylase: structure/function relationships, and protein engineering   总被引:10,自引:0,他引:10  
Glucoamylases are inverting exo-acting starch hydrolases releasing beta-glucose from the non-reducing ends of starch and related substrates. The majority of glucoamylases are multidomain enzymes consisting of a catalytic domain connected to a starch-binding domain by an O-glycosylated linker region. Three-dimensional structures have been determined of free and inhibitor complexed glucoamylases from Aspergillus awamori var. X100, Aspergillus niger, and Saccharomycopsis fibuligera. The catalytic domain folds as a twisted (alpha/alpha)(6)-barrel with a central funnel-shaped active site, while the starch-binding domain folds as an antiparallel beta-barrel and has two binding sites for starch or beta-cyclodextrin. Certain glucoamylases are widely applied industrially in the manufacture of glucose and fructose syrups. For more than a decade mutational investigations of glucoamylase have addressed fundamental structure/function relationships in the binding and catalytic mechanisms. In parallel, issues of relevance for application have been pursued using protein engineering to improve the industrial properties. The present review focuses on recent findings on the catalytic site, mechanism of action, substrate recognition, the linker region, the multidomain architecture, the engineering of specificity and stability, and roles of individual substrate binding subsites.  相似文献   

13.
The thermodynamic effects of the disulfide bond of the fragment protein of the starch-binding domain of Aspergillus niger glucoamylase was investigated by measuring the thermal unfolding of the wild-type protein and its two mutant forms, Cys3Gly/Cys98Gly and Cys3Ser/Cys98Ser. The circular dichroism spectra and the thermodynamic parameters of binding with beta-cyclodextrin at 25 degrees C suggested that the native structures of the three proteins are essentially the same. Differential scanning calorimetry of the thermal unfolding of the proteins showed that the unfolding temperature t1/2 of the two mutant proteins decreased by about 10 degrees C as compared to the wild-type protein at pH 7.0. At t1/2 of the wild-type protein (52.7 degrees C), the mutant proteins destabilized by about 10 kJ mol(-1) in terms of the Gibbs energy change. It was found that the mutant proteins were quite stabilized in terms of enthalpy, but that a higher entropy change overwhelmed the enthalpic effect, resulting in destabilization.  相似文献   

14.
Mutagenesis of Bacteroides thetaiotaomicron with the transposon Tn4351 produced five classes of mutants that were not able to grow on amylose or amylopectin. These classes of mutants differed in their ability to grow on maltoheptaose (G7) and in the level of starch-degrading enzymes produced when bacteria were grown on maltose. All of the mutants were deficient in starch binding. Since one class of mutants retained normal levels of starch-degrading enzymes, this indicates that binding of the starch molecule by a cell surface receptor is necessary for starch utilization by B. thetaiotaomicron. Analysis of a starch-negative mutant that grew on G7 indicated that B. thetaiotaomicron possessed two starch-binding components or sites. One component (site A), apparently missing in this mutant, had an absolute preference for larger starch oligomers, whereas the other component (site M) also had a high affinity for maltodextrins (G4 through G7). Mutants not able to grow on maltodextrins (greater than G4) probably lacked both of these binding components. Only one class of mutants did not grow normally on maltose, but instead had a 4- to 5-h lag on maltose and a slower growth rate than the wild type. This class of mutants did not produce any of the starch-degrading enzymes or bind starch, even when growing on maltose. Such a phenotype probably resulted from transposon inactivation of a central regulatory gene or a gene encoding an enzyme that produces the inducer. The fact that both the degradative enzymes and the starch-binding activity were affected in this mutant indicates that genes encoding the cell surface starch-binding site are under the same regulatory control as genes encoding the enzymes.  相似文献   

15.
A novel starch-binding domain (SBD) that represents a new carbohydrate-binding module family (CBM69) was identified in the α-amylase (AmyP) of the recently established alpha-amylase subfamily GH13_37. The SBD and its homologues come mostly from marine bacteria, and phylogenetic analysis indicates that they are closely related to the CBM20 and CBM48 families. The SBD exhibited a binding preference toward raw rice starch, but the truncated mutant (AmyPΔSBD) still retained similar substrate preference. Kinetic analyses revealed that the SBD plays an important role in soluble starch hydrolysis because different catalytic efficiencies have been observed in AmyP and the AmyPΔSBD.  相似文献   

16.
Patients with mutation L394R in gamma-glutamyl carboxylase have a severe bleeding disorder because of decreased biological activities of all vitamin K-dependent coagulation proteins. Vitamin K administration partially corrects this deficiency. To characterize L394R, we purified recombinant mutant L394R and wild-type carboxylase expressed in baculovirus-infected insect cells. By kinetic studies, we analyzed the catalytic activity of mutant L394R and its binding to factor IX's propeptide and vitamin KH(2). Mutant L394R differs from its wild-type counterpart as follows: 1) 110-fold higher K(i) for Boc-mEEV, an active site-specific, competitive inhibitor of FLEEL; 2) 30-fold lower V(max)/K(m) toward the substrate FLEEL in the presence of the propeptide; 3) severely reduced activity toward FLEEL carboxylation in the absence of the propeptide; 4) 7-fold decreased affinity for the propeptide; 5) 9-fold higher K(m) for FIXproGla, a substrate containing the propeptide and the Gla domain of human factor IX; and 6) 5-fold higher K(m) for vitamin KH(2). The primary defect in mutant L394R appears to be in its glutamate-binding site. To a lesser degree, the propeptide and KH(2) binding properties are altered in the L394R mutant. Compared with its wild-type counterpart, the L394R mutant shows an augmented activation of FLEEL carboxylation by the propeptide.  相似文献   

17.
Barley -amylase isozyme 2 was cloned into and constitutively secreted by Saccharomyces cervisiae. The gene coding for the wild-type enzyme was subjected to directed evolution. Libraries of mutants were screened by halo formation on starch agar plates, followed by high-throughput liquid assay using dye-labeled starch as the substrate. The concentration of recombinant enzyme in the culture supernatant was determined by immunodetection, and used for the calculation of specific activity. After three rounds of directed evolution, one mutant (Mu322) showed 1000 times the total activity and 20 times the specific activity of the wild-type enzyme produced by the same yeast expression system. Comparison of the amino acid sequence of this mutant with the wild type revealed five substitutions: Q44H, R303K and F325Y in domain A, and T94A and R128Q in domain B. Two of these mutations, Q44H and R303K, result in amino acids highly conserved in cereal -amylases. R303K and F325Y are located in the raw starch-binding fragment of the enzyme molecule.  相似文献   

18.
Based on primary amino acid sequence comparisons with other phosphoglucomutases, 12 conserved residues in the Acetobacter xylinum phosphoglucomutase (CelB) were substituted by site-directed mutagenesis, resulting in mutant enzymes with Kcat values [glucose-1-phosphate (G-1-P) to glucose-6-phosphate] ranging from 0 to 46% relative to that of the wild-type enzyme. In combination with a versatile set of plasmid expression vectors these proteins were used in a metabolic engineering study on sugar catabolism in Escherichia coli. Mutants of E. coli deficient in phosphoglucomutase synthesize intracellular amylose when grown on galactose, due to accumulation of G-1-P. Wild-type celB can complement this lesion, and we show here that the ability of the mutant enzymes to complement is sensitive to variations in their respective in vitro determined Kcat and Km G-1-P values. Reduced catalytic efficiencies could be compensated by increasing the CelB expression level, and in this way a mutant protein (substitution of Thr-45 to Ala) displaying a 7600-fold reduced catalytic efficiency could be used to eliminate the amylose accumulation. Complementation experiments with the homologous phosphoglucomutase indicated that a Km G-1-P value significantly below that of CelB is not critical for the in vivo conversion of the substrate.  相似文献   

19.
Itk is a Tec family tyrosine kinase found in T cells that is activated upon ligation of the T cell receptor (TCR/CD3), CD2, or CD28. Itk contains five domains in addition to the catalytic domain: pleckstrin homology, Tec homology which contains a proline-rich region, Src homology 3, and Src homology 2. To provide a basis for understanding the contribution of these various domains to catalysis, recombinant Itk was purified and its substrate specificity determined by steady-state kinetic methods. Measurements of the rates of phosphorylation of various protein substrates, including Src associated in mitosis 68K protein (SAM68), CD28, linker for activation of T cells, and CD3 zeta, at a fixed concentration indicated that SAM68 was phosphorylated most rapidly. Wild-type Itk and three Itk mutants were characterized by comparing their activity (k(cat)) using the SAM68 substrate. A deletion mutant removing the pleckstrin homology domain and part of the Tec homology domain (Itk(Delta152)) had approximately 10-fold less activity than wild type, a mutant with an altered proline-rich domain (P158A,P159A) had a more dramatic 100-fold loss of activity, and the catalytic domain alone was essentially inactive. Itk(Delta152) had K(m) values for ATP and SAM68 nearly identical to those of the wild-type enzyme, while Itk(P158A,P159A) had approximately 3-fold higher K(m) values for each substrate. SAM68 phosphorylation by the wild-type and mutant enzymes in the presence of several tyrosine kinase inhibitors were compared using a homogeneous time-resolved fluorescence assay. Both the Itk(Delta152) deletion mutant and the Itk(P158A,P159A) mutant had IC(50) values similar to those of the wild-type enzyme for staurosporine, PP1, and damnacanthal. These comparisons, taken together with the similar K(m) values for ATP and SAM68 substrate between the wild-type and the mutant enzymes, indicate that the amino acids in the N-terminal 152 residues and proline-rich domains enhance catalysis by affecting turnover rate rather than substrate binding.  相似文献   

20.
This study is the first report on the effectiveness and specificity of alpha-acarviosinyl-(1-->4)-alpha-D-glucopyranosyl-(1-->6)-D-glucopyranosylidene-spiro-thiohydantoin (PTS-G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG2CNP) and amylose hydrolysis catalysed by human salivary alpha-amylase (HSA). Synthesis of PTS-G-TH was carried out by transglycosylation using acarbose as donor and glucopyranosylidene-spiro-thiohydantoin (G-TH) as acceptor. This new compound was found to be a much more efficient HSA inhibitor than G-TH. The inhibition is a mixed-noncompetitive type on both substrates and only one molecule of inhibitor binds to the enzyme. Kinetic constants calculated from secondary plots are in micromolar range. Values of K(EI) and K(ESI) are very similar in the presence of GalG2CNP substrate; 0.19 and 0.24 microM, respectively. Significant difference can be found for K(EI) and K(ESI) using amylose as substrate; 8.45 and 0.5 microM, respectively. These values indicate that inhibition is rather uncompetitive than competitive related to amylose hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号