首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various uniform salt forms of an R-form lipopolysaccharide (LPS) extracted from Klebsiella strain LEN-111 (O3-:K1-) were prepared and their ultrastructure was examined. The LPS, which was extracted by the phenol-water method, freed from contamination with RNA by treatment with RNase, and precipitated by addition of two volumes of 10 mM MgCl2-ethanol, was used as the original preparation for uniform salt forms. The original LPS preparation formed a hexagonal lattice structure with a lattice constant of 14.9 +/- 0.2 nm. The LPS after electrodialysis retained the ability to form a hexagonal lattice structure, although its lattice constant was large (18.7 +/- 0.5 nm) and the lattice structure of the electrodialyzed LPS was labile at pH 8.0 in contrast to that of the original LPS preparation. The magnesium salt form of the LPS formed essentially the same ordered hexagonal lattice structure (lattice constant of 15.0 +/- 0.2 nm) as that of the original LPS preparation. The calcium and ammonium salt forms formed a hexagonal lattice structure, but the lattice constants of the calcium and ammonium salt forms were larger (18.6 +/- 0.6 nm and 19.3 +/- 0.4 nm, respectively) than that of the magnesium salt form. The sodium and potassium salt forms consisted of freely branching ribbon-like structures with an average width of 13 nm and an average thickness of 9 nm. The triethylamine salt form consisted principally of short rods (10 nm X 9-13 nm).  相似文献   

2.
N Kato  M Ohta  N Kido  H Ito  S Naito    T Kuno 《Journal of bacteriology》1985,162(3):1142-1150
We extracted an R-form lipopolysaccharide (LPS) by the phenol-water method from Klebsiella sp. strain LEN-111 (O3-:KI-) and followed the changes in ultrastructure of the LPS during the extraction procedure. When the LPS was obtained from the water phase of an extract by addition of 2 volumes of 10 mM MgCI2-ethanol, it consisted of membrane pieces with a hexagonal lattice structure with a lattice constant of 14 to 15 nm. The lattice structure of the LPS was disrupted into short rods with sodium dodecyl sulfate, but the same hexagonal lattice structure was again formed by precipitation with 2 volumes of 10 mM MgCI2-ethanol. The LPS preparation after two cycles of treatment by the phenol-water method, which contained no detectable amounts of proteins, kept an unaltered ability to form the hexagonal lattice structure. Extensive treatment with pronase and extraction with chloroform did not impair the ability of the LPS preparation to form the lattice structure. When the other salts, NaCI, CaCI2 or Zn(CH3COO)2, were used for precipitation of the LPS with ethanol in place of MgCI2, the LPS did not form the hexagonal lattice structure. However, if the LPS precipitated with NaCI-ethanol was converted to the magnesium salt form after it was electrodialyzed, it formed the same hexagonal lattice structure as the LPS precipitated with MgCI2-ethanol. From these results, it was concluded that the R-form LPS has the ability of in vitro self-assembly into a hexagonal lattice structure in the presence of Mg2+ without the help of other components such as proteins and free lipids from outer membrane.  相似文献   

3.
The R-form lipopolysaccharide (LPS) from Klebsiella strain LEN-111 (O3-:K1-) forms a hexagonal lattice structure with a lattice constant of 14 to 15 nm when it is precipitated by addition of two volumes of 10 mM MgCl2-ethanol. When the LPS was suspended in various buffers (50 mM) at pH 2 to 12 for 24 hr at 4 C, at pH 2 and 3 pits of the hexagonal lattice structure markedly disappeared, at pH 4 to 8.5 the lattice structure was stable, and at pH 9 to 12 it tended to loosen somewhat. The LPS from which cations were removed by electrodialysis retained the ability of hexagonal assembly, although the lattice constant of the hexagonal lattice of the electrodialyzed LPS was large. The lattice structure of the electrodialyzed LPS was much more labile than that of the non-electrodialyzed LPS at alkaline pH levels and the former was completely disintegrated into ribbon-like structures when the LPS was suspended in 50 mM Tris buffer at pH 7.7 or higher. However, the electrodialyzed LPS formed a hexagonal lattice structure in Tris buffer at pH 8.5 containing 0.1 to 100 mM MgCl2. The lattice constants of the hexagonal lattice formed by the electrodialyzed LPS at 10 or 100 mM MgCl2 were very similar to that of the lattice of the non-electrodialyzed LPS. From these results it is concluded that the lability of the hexagonal lattice structure of the electrodialyzed LPS at alkaline conditions is due to removal of Mg2+ by electrodialysis.  相似文献   

4.
In vitro hexagonal assembly of lipopolysaccharide of Escherichia coli K-12   总被引:2,自引:0,他引:2  
We examined Escherichia coli K-12 lipopolysaccharide (LPS), which is known to be an R-form LPS, for its ability to form a hexagonal lattice structure in vitro. The LPS from E. coli K-12 strain JE1011 did not form a hexagonal lattice structure when it was precipitated by addition of two volumes of 10 mM MgCl2-ethanol, but it did form such a structure when it was electrodialyzed and then converted to the magnesium or calcium salt form. The lattice constant of the magnesium salt form was 15.2 +/- 0.3 nm and that of the calcium salt form 18.5 +/- 0.3 nm. Since prior treatment of the LPS with proteinase K in the presence of sodium dodecyl sulfate did not affect its capability of hexagonal assembly, the lattice formation by the LPS does not require the presence of proteins.  相似文献   

5.
The R-form lipopolysaccharide (LPS) from Klebsiella strain LEN-111 (O3-:K1-) forms a hexagonal lattice structure with a lattice constant of 14 to 15 nm when it is precipitated by addition of two volumes of 10 mM MgCl2-ethanol. The stability of this hexagonal lattice structure in long-term incubation at 4 C was investigated. The hexagonal lattice structure was stable for at least 220 days when the LPS was suspended in distilled water, but it had been disintegrated into a rough mesh-like structure when the LPS was suspended in 50 mM tris(hydroxymethyl)aminomethane (Tris) buffer, pH 8.5, at 4 C for 60 days. Half of the Mg bound to the LPS was released when the LPS was suspended in Tris buffer for 60 days, whereas Mg was not released when it was suspended in distilled water even for 220 days. By contrast, it was stable for at least 220 days in Tris buffer containing 5 mM MgCl2. The LPS suspended in Tris buffer for 60 days, at which time the structure had been disintegrated, could be restored to the original hexagonal lattice structure within 24 hr by addition of 5 mM MgCl2. From these results it is concluded that the hexagonal lattice structure of the LPS retains long-range stability if Mg bound to the LPS is not released from the LPS.  相似文献   

6.
The relationship between formation of the Mg2(+)-induced hexagonal lattice structure by R-form lipopolysaccharides (LPS) and chemical structure of their R-cores was investigated using different kinds of R-form LPS from a series of mutants of Salmonella minnesota or S. typhimurium. The optimal experimental condition for formation of the hexagonal lattice structure was to suspend LPS preparations, from which cationic material was removed by electrodialysis, in 50 mM tris (hydroxymethyl) aminomethane buffer at pH 8.5 containing 10 mM MgCl2. Under this experimental condition, Rb1 LPS formed the hexagonal lattice structure with the lattice constant of 14.0 +/- 0.2 nm. Ra LPS, which possesses the full length of R-core, also formed the hexagonal lattice structure but its lattice constant was larger (18.1 +/- 0.2 nm) than that of Rb1 LPS (the lattice structure by Ra LPS was looser than that by Rb1 LPS). All the other R-form LPS preparations tested, RcP+, PcP-, Rd1P-, and Re LPS, whose R-cores are shorter than that of Rb1 LPS, did not form the hexagonal lattice structure, but formed membranous structures showing various shapes which consisted of multiple bilayer structures. Failure to form the hexagonal lattice structure was the common feature of these kinds of R-form LPS irrespective of temperature at which the LPS suspensions in 10 mM MgCl2-50 mM Tris buffer were incubated. From the results of the present study it was concluded that capability of R-form LPS to form the hexagonal lattice structure has a close correlation with the chemical structure of their R-cores.  相似文献   

7.
When the R-form lipopolysaccharide (LPS) from Klebsiella pneumoniae strain LEN-111 (O3-:K1-), from which cationic material had been removed by electrodialysis, was suspended in 50 mM Tris buffer at pH 8.5 containing 0.1 mM or higher concentrations of MgCl2, it formed an ordered two-dimensional hexagonal lattice structure and its center-to-center distance (lattice constant) depended upon the concentration of MgCl2 and reached the shortest value (14 nm) at 10 mM. In contrast, in the presence of 0.1 to 10 mM CaCl2 in place of MgCl2, the electrodialyzed LPS did not form such an ordered hexagonal lattice structure but formed an irregular network structure with a center-to-center distance of 19 to 20 nm. We investigated interaction of Mg2+ and Ca2+ in formation of the hexagonal lattice structure by the electrodialyzed LPS suspended in 50 mM Tris buffer at pH 8.5. When 0.1 mM or higher concentrations of CaCl2 were mixed with 1 mM MgCl2 or when 1 mM or higher concentrations of CaCl2 was mixed with 10 mM MgCl2, the electrodialyzed LPS did not form the hexagonal lattice structure of the magnesium salt type but formed the irregular network structure of the calcium salt type. In the coexistence of equimolar or higher concentrations of CaCl2 together with 1 or 10 mM MgCl2, the binding of Mg to the electrodialyzed LPS was significantly inhibited and, conversely, the binding of Ca was enhanced as compared with when MgCl2 or CaCl2 was present alone. However, the coexistence of 10 times less molar concentrations of CaCl2 did not significantly inhibit the binding of Mg to the electrodialyzed LPS. Therefore, the inhibition of formation of the Mg2(+)-mediated hexagonal lattice structure of the electrodialyzed LPS by equimolar or higher concentrations of CaCl2 accompanied the inhibition of binding of Mg but that by 10 times less molar concentrations of CaCl2 did not accompany it.  相似文献   

8.
R-form lipopolysaccharide (LPS) from Klebsiella pneumoniae strain LEN-111 (O3-: K1-), which was precipitated by the addition of 2 volumes of ethanol containing 10 mM MgCl2 for the purification process, ultrastructurally exhibited membrane pieces consisting of an ordered hexagonal lattice structure with a lattice constant of 14 to 15 nm. When the R-form LPS was suspended in 50 mM tris (hydroxymethyl) aminomethane buffer (at pH 8.5) containing 1 mM or higher concentrations of CaCl2 and kept at 4 C for 10 hr, the ordered hexagonal lattice structure of the R-form LPS was disintegrated and changed to an irregular rough, mesh-like structure. By treatment with CaCl2, the content of Mg in the LPS was markedly decreased, and conversely, the content of Ca was increased to a level depending upon the concentration of CaCl2. Results indicate that the addition of CaCl2 to suspensions of the Mg-bound R-form LPS result in a tighter binding of Ca2+ to the R-form LPS and the release of Mg2+ from the R-form LPS, and as a consequence, destroys the Mg2+ -induced ordered hexagonal lattice structure of the R-form LPS.  相似文献   

9.
The R-form lipopolysaccharide (LPS) from Escherichia coli K-12, from which cationic material had been removed by electrodialysis and the pH of which had fallen to 3.6, formed a rough hexagonal lattice structure with the lattice constant of about 19 nm. The rough hexagonal structure was maintained in buffers at pH 5 or lower but disintegrated into the ribbon-like structures in buffers at pH 6 or higher. However, in the presence of 10 mM Mg2+, the hexagonal lattice structure was not disintegrated even at alkaline pH levels but conversely it became more dense. At pH 8.3 to 8.9, the hexagonal lattice structure with the shortest lattice constant (15 nm) was formed. The same optimal pH levels were obtained for formation of the dense hexagonal lattice structure (lattice constant, 14 to 15 nm) by the electrodialyzed LPS from Klebsiella pneumoniae strain LEN-111 (O3-:K1-). The ability of Mg2+ to induce formation of the dense hexagonal lattice structure of the K-12 LPS depends upon the presence of buffers showing the optimal pH levels, since a very high concentration of Mg2+ such as 500 mM was required for the lattice formation in distilled water. The amount of the magnesium bound to the K-12 LPS did not significantly differ throughout the pH range of 3 to 9. Therefore, the optimal pH range is another essential factor for formation of the dense hexagonal lattice structure of the LPS in addition to binding of the magnesium to the LPS.  相似文献   

10.
Previously we showed that Salmonella minnesota Re and Ra lipopolysaccharides (LPSs) and Escherichia coli K-12 LPS formed three-dimensional crystals, either hexagonal plates or solid columns, when they were precipitated by the addition of 2 volumes of 95% ethanol containing 375 mM MgCl2 and incubated in 70% ethanol containing 250 mM MgCl2, and stored at 4 C for 10 days. Later, Escherichia coli K-12 LPS thus treated was found to form discoid crystals as well as hexagonal plate crystals and solid column crystals. Analysis by electron diffraction of the discoid crystals from the direction perpendicular to the basal plane showed that they consisted of hexagonal lattices with the a axis of 4.62 A. This result was quite the same as that of the hexagonal plate crystals. Electron micrographs of the edges of the discoid crystals revealed stacked sheets of the hexagonal plate crystals. From these results it was concluded that formation of the discoid crystals results from irregular overlapping of the hexagonal plate crystals.  相似文献   

11.
Salmonella typhimurium SR-form lipopolysaccharide (LPS), consisting of a single repeating unit of the O-antigenic polysaccharide, linked to the R-core consisting of oligosaccharide that is, in turn, linked to lipid A, formed crystals whose shapes were hexagonal plates, discoids, and solid columns when precipitated by the addition of 2 volumes of 95% ethanol containing 375 mM MgCl2 and kept in 70% ethanol containing 250 mm MgCl2 at 4 C for 10 days. Among these crystals, the basic form is considered to be the hexagonal plates. Analyses of hexagonal plate crystals showed that they consist of hexagonal lattices with a lattice constant (a axis) of 4.62 A and longitudinal axis (c axis) of approximately 100 A. In X-ray diffraction patterns in the low-angle region, crystals of S. typhimurium SR-form LPS exhibited much less distinct reflections when compared with crystals of synthetic Escherichia coli-type lipid A. In contrast to the previous finding that S. minnesota S-form LPS possessing the O-antigenic polysaccharide does not crystallize under the same experimental conditions as used in the present study, the presence of a single repeating unit of the O-antigenic polysaccharide does not inhibit crystallization.  相似文献   

12.
The chemical structure determining properties and biological functions of endotoxins derived from Desulfovibrio desulfuricans species has not been recognized, which considerably hinders the choice of an effective extraction procedure of these lipopolysaccharides (LPS) from the bacterial outer cell membrane. We aimed at selecting the most effective method of LPS isolation from D. desulfuricans in terms of the most efficient extraction solution, the appropriate conditions of isolation and adequate purification technique. For this purpose we tested a few literature-based procedures utilizing various extraction mixtures (phenol-water, phenol-chloroform-petroleum ether and Tri-Reagent, i.e. aqueous solution of guanidinum thiocyanate and phenol). The best yield and purity of the isolated LPS were provided by the application of the extraction with phenol-water according to the modified by Shnyra et.al. (2000) procedure of Westphal et. al. (1952). A satisfactory method of isolation in micro scale appeared to be that based on Tri-Reagent and propagated by Yi and Hackett in 2000. The extraction of LPS from D. desulfuricans with phenol-chloroform-petroleum ether should not be recommended due to its low efficiency.  相似文献   

13.
The R-form lipopolysaccharide from Klebsiella pneumoniae strain LEN-111 (O3-:K1-), from which cationic material had been removed by electrodialysis, was previously shown to form a hexagonal lattice structure with the lattice constant of 14 to 15 nm when suspended in 50 mM tris(hydroxymethyl)aminomethane buffer at pH 8.5 containing 10 mM Mg2+. Under this experimental condition, effects of other divalent metal cations on the hexagonal assembly of the electrodialyzed LPS were compared with that of Mg2+. The Zn2+, Hg2+, Cu2+, and Ni2+ could produce essentially the same hexagonal lattice structure with the lattice constant of 14.5 to 15.0 nm as that formed with Mg2+. The Cd2+, Co2+, and Fe2+ produced the hexagonal lattice structure with the lattice constant of 15.5 to 16.0 nm, and Ba2+, Sr2+, and Ca2+ produced that with the lattice constant of 18 to 19 nm. In addition, the hexagonal lattice structures formed with the latter three cations were less orderly than those formed with the other cations. When the higher concentrations of Ba2+, Sr2+, and Ca2+ were used, the lattice constants were not shortened. The length of lattice constants of the hexagonal lattice structures formed with the divalent cations did not relate to the quantity of the cations bound to the LPS. Among the divalent cations tested, Hg2+ was bound to the LPS in the smallest amount (its atomic ratio to P, 0.07), and Zn2+ and Fe2+ were bound in very large amounts (their atomic ratios to P, 2.94 and 8.28, respectively).  相似文献   

14.
Salmonella minnesota Re and Ra lipopolysaccharides (LPSs) and Escherichia coli K-12 LPS formed three-dimensional crystals, either hexagonal plates (preferential growth along the a axis) or solid columns (preferential growth along the c axis), when they were precipitated by the addition of 2 volumes of 95% ethanol containing 375 mM MgCl2 and incubated in 70% ethanol containing 250 mM MgCl2 at 4 degrees C for 10 days. Analyses of crystals suggested that they consist of hexagonal lattices with the a axis (a side of the lozenge as a unit cell on the basal plane) of 0.462 nm for all these three kinds of LPSs and the c axes (perpendicular to the basal plane) of 5.85, 8.47, and 8.75 nm for S. minnesota Re and Ra LPSs and E. coli K-12 LPS, respectively, and that hydrocarbon chains of the lipid A portion play the leading part in crystallization, whereas the hydrophilic part of the lipid A (the disaccharide backbone) and R core exhibit a disordered structure or are in a random orientation. The phenomenon of doubling of the a axis to 0.924 nm was observed with crystals of S. minnesota Re LPS when they were incubated in 70% ethanol for an additional 180 days, but not with crystals of S. minnesota Ra LPS or E. coli K-12 LPS. S. minnesota S-form LPS possessing the O-antigen-specific polysaccharide and S. minnesota free lipid A obtained by acid hydrolysis of Re LPS did not crystallize under the same experimental conditions.  相似文献   

15.
K F Bahrani  J D Oliver 《Microbios》1991,66(267):83-93
Lipopolysaccharides (LPS) from an opaque and a translucent colony variant of Vibrio vulnificus were isolated by several methods and the electrophoretic profiles were analysed. The phenol-water extraction method provided a better yield compared to the phenol-chloroform-petroleum ether method. In addition, two rapid micro-assays were used to isolate LPS for electrophoretic analysis. The electrophoretic pattern was the same for all LPS extracts and was similar in both variants. No high molecular weight bands, characteristic of smooth LPS, were detected in the LPS of this organism. This was in contrast to the smooth nature of the LPS of another member of the Vibrionaceae examined, V. cholerae. The result of this study showed no correlation between LPS and colony morphology in V. vulnificus.  相似文献   

16.
The magnesium salt of R-form lipopolysaccharide (LPS) from Klebsiella pneumoniae strain LEN-111 (O3-:K1-) that was prepared after the removal of cationic materials by electrodialysis formed essentially the same ordered hexagonal lattice structure with a lattice constant of 14 to 15 nm as the original non-electrodialyzed preparation of the R-form LPS. When the magnesium salt was suspended in 50 mM glycine buffer or Tris buffer at pH 1.4 to 9.5 and kept at 4 C for 24 hr, its content of Mg was markedly decreased, and its hexagonal lattice structure was changed to a swollen hexagonal lattice structure with extended lattice constants at pH 1.4 and to a loose mesh-like structure at pH 3.0 or higher. In the original non-electrodialyzed preparation of the R-form LPS, the release of Mg and disintegration of the hexagonal lattice structure did not occur by suspending in buffers at pH 1.4 to 8.5 at 4 C for 24 hr, but occurred only at pH 9.0 or higher. The results suggest that organic cations that can be removed by electrodialysis play some part in tight binding to Mg2+ and in stabilizing the ordered hexagonal assembly of the R-form LPS.  相似文献   

17.
Lipopolysaccharides (LPS) of four nonencapsulated strains of the human enteric pathogen Campylobacter jejuni were chemically characterized. When applied to two of the strains, extraction by a modified phenol-chloroform-petroleum ether method (H. Brade and C. Galanos, Eur. J. Biochem. 122:233-237, 1982) gave better yields of LPS than did extraction by the conventional hot phenol-water technique. Constituents common to all LPS were D-glucose, D-galactose, L-glycero-D-manno-heptose, 3-deoxy-D-manno-2-octulosonic acid, D-glucuronic acid, D-galactosamine, and phosphorylethanolamine. Phosphate was present in a relatively high amount. In addition, the LPS of three strains contained N-acetylneuraminic acid, whereas the LPS of the strain lacking this component contained 3-amino-3,6-dideoxy-D-glucose. The lipid A component contained phosphate with D-glucosamine and 2,3-diamino-2,3-dideoxy-D-glucose as the major amino sugars. Ethanolamine-phosphate was present also. The major fatty acids were ester- and amide-bound 3-hydroxytetradecanoic and ester-bound hexadecanoic acids, with a minor amount of ester-bound tetradecanoic acid. This is the first report of N-acetylneuraminic acid in the oligosaccharide moiety and diaminoglucose in the lipid A of C. jejuni LPS.  相似文献   

18.
Lipopolysaccharides from phase I (LPSI) Coxiella burnetii Ohio and Nine Mile strains and from phase II (LPSII) Nine Mile stain were negatively and positively and examined with the electron microscope. The ultrastructure of LPSI and LPSII positively stained with uranyl formate or uranyl acetate was ribbon-like. When negatively stained with uranyl acetate, LPSI was ribbon-like but LPSII exhibited hexagonal lattice structures. However, LPSII stained negatively with sodium phosphotungstate and ammonium molybdate exhibited hexagonal lattice ultrastructures which were not identical to those observed when negatively stained with uranyl acetate. The hexagonal lattice structures formed in vitro were due to the interactions of LPSII and the staining reagents rather than to protein-LPS interactions. The differences in the ultrastructures of LPSI and LPSII are undoubtedly based on variations in their chemical composition.  相似文献   

19.
Various uniform salt forms of Klebsiella O3 lipopolysaccharide (KO3 LPS) isolated from culture supernatant were prepared as follows. Basic materials present in KO3 LPS were rigorously removed by electrodialysis and the electrodialyzed KO3 LPS was neutralized with NaOH, KOH, NH4OH, Ca(OH)2, tris(hydroxymethyl)aminomethane, or triethylamine. The ultrastructure of the uniform salt forms of KO3 LPS was examined using preparations stained with uranyl acetate. The sodium, potassium, ammonium, and trisaminomethane salt forms were structurally very similar to the natural form of KO3 LPS which consisted of a mixture of flat ribbon-like structures (average width of 16 nm and average thickness of 7 nm) and spheres with various diameters, both covered with fine hairy structures. When KO3 LPS was converted to the triethylamine salt form, the ribbon-like structures were disrupted into very small granules (7-9 nm X 9-15 nm). The calcium salt form consisted of particles and rods of various sizes and ribbon-like structures which were markedly extended (maximum width of 50 nm) and presented irregular shapes. When converted to the calcium salt form, the ribbon-like structures were extended and eventually divided into particles and rods. For reasons still unknown, the sodium salt of KO3 LPS was mostly stained positively with uranyl acetate in contrast to the natural form and the other uniform salt forms which were always negatively stained. In the positively stained preparation of the sodium salt form, it was clearly shown that the ribbon-like structures consisted of a bilayer.  相似文献   

20.
Endotoxic lipopolysaccharide and glycolipids ( RGl ) extracted from Salmonella minnesota wild type and R mutant cells ( chemotypes Ra, Rb, Rc, Rd1, and Rd2 ), respectively, with hot phenol-water (PW) and phenol-chloroform-petroleum ether (PCP) were analyzed chemically and electron microscopically. All RGl extracted with PW ( RGl -PW) contained excess amounts of phosphate, O-ester linked fatty acids and neutral sugars, while all RGl extracted with PCP ( RGl -PCP) contained excess amounts of free amino groups and fatty acids, in addition to the RGl constituents. Polyamine (cadaverine), phosphoethanolamine, and an unidentified amino compound were contained in RGl -PCP as free amino groups. When stained with uranyl formate, the ultrastructure of RGl -PW showed a spherical form (onion-like form), whereas the micrographs of RGl -PCP showed a filamentous structure, regardless of strain differences. On the other hand, the micrographs of RGl -PW represented spherical and doughnut-shaped forms, and the micrographs of RGl -PCP showed filamentous or stick forms, when stained with uranyl acetate. Thus, it is suggested that the ultrastructures of RGl were dominated by the solvent systems used for extraction, and not by the strains used here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号