首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Beginning during the second half of gestation, increasing numbers of cardiac myocytes withdraw from the cell cycle such that DNA synthesis is no longer detectable in these cells by neonatal day 17 in vivo. The mechanisms that exclude these and other terminally differentiated cells from the cell division cycle are poorly understood. To begin to explore the molecular basis of the barrier to G1/S progression in cardiac myocytes, we used adenoviruses to express wild-type and mutant E1A proteins in primary cultures from embryonic day 20 rats. While most of these cardiac myocytes are ordinarily refractory to DNA synthesis, even in the presence of serum growth factors, expression of wild-type E1A stimulates DNA synthesis in up to 94% or almost all successfully transduced cells. Rather than complete the cell cycle, however, these cells undergo apoptosis. Apoptosis is limited to those cells that engage in DNA synthesis, and the kinetics of the two processes suggest that DNA synthesis precedes apoptosis. Mutations in E1A that disable it from binding Rb and related pocket proteins have little effect on its ability to stimulate DNA synthesis in cardiac myocytes. In contrast, mutants that are defective in binding the cellular protein p300 stimulate DNA synthesis 2.4-4.1-fold less efficiently, even in the context of retained E1A pocket protein binding. In the absence of ElA pocket protein binding, the usual situation in the cell, loss of p300 binding severely decreases the ability of ElA to stimulate DNA synthesis. These results suggest that the barrier to G1/S progression in cardiac myocytes is mediated. at least in part, by the same molecules that gate the G1/S transition in actively cycling cells, and that p300 or related family members play an important role in this process.  相似文献   

9.
10.
11.
12.
13.
Adult cardiac myocytes are terminally differentiated cells that are no longer able to divide. Accumulating data support the idea that apoptosis in these cells is involved in the transition from cardiac compensation to decompensated heart failure. Since a number of neurohormonal factors are activated in this state, these factors may be involved in the positive and negative regulation of apoptosis in cardiac myocytes. beta1-Adrenergic receptor and angiotensin type 1 receptor pathways, nitric oxide and natriuretic peptides are involved in the induction of apoptosis in these cells, while alpha1- and beta2-adrenergic receptor and endothelin-1 type A receptor pathways and gp130-related cytokines are antiapoptotic. The myocardial protection of the latter is mediated, at least in part, through mitogen-activated protein kinase-dependent pathways, compatible with the findings in other cell types. In contrast, signaling pathways leading to apoptosis in cardiac myocytes are distinct from those in other cell types. The cAMP/PKA pathway induces apoptosis in cardiac myocytes and blocks apoptosis in other cell types. The p300 protein, a coactivator of p53, mediates apoptosis in fibroblasts but appears to play a protective role in differentiated cardiac myocytes. The inhibition of myocardial cell apoptosis in heart failure may be achieved by directly blocking apoptosis signaling pathways or by modulating neurohormonal factors involved in their regulation. These may provide novel therapeutic strategies in some forms of heart failure.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号