首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The direct conversion of d-xylose to ethanol was investigated using immobilized growing and non-growing cells of the yeast Pachysolen tannophilus. Both preparations produced ethanol from d-xylose, however the d-xylose conversion to ethanol was much better with immobilized growing cells. Ethanol concentration up to 22.9 g/l and ethanol yield of 0.351 g/g of d-xylose were obtained in batch fermentation by immobilized growing cells whereas only 17.0 g/l and 0.308 g/g of d-xylose were obtained by immobilized non-growing cells. With continuous systems, immobilized growing cells were necessary for the long-term operation, since a steady state ethanol concentration of 17.7 g/l was maintained for only one week by immobilized non-growing cell reactor. With simultaneous control of aeration rate and concentrations of nitrogen sources in feed medium, immobilized growing cells of P. tannophilus showed excellent performance. At a residence time of 25 h, the immobilized cell reactor produced 26.9 g/l of ethanol from 65 g/l of d-xylose in feed medium.  相似文献   

2.
Recovery of uranium by immobilized microorganisms   总被引:2,自引:0,他引:2  
Summary Some attempts were made to recover uranium from sea and fresh water using immobilized Streptomyces viridochromogenes and Chlorella regularis cells. The cells immobilized in polyacrylamide gel have the most favorable features for uranium recovery; high adsorption ability, good mechanical properties, and applicability in a column system. The adsorption of uranium by the immobilized cells is not affected by the pH values between 4 and 9. These results show that uranium adsorption becomes independent of pH after immobilization. The amounts of uranium adsorbed by the immobilized cells increased linearly with temperature, suggesting that the adsorption of uranium by the immobilized cells is an endothermic reaction. The immobilized cells can recover uranium almost quantitatively from both fresh and sea water containing uranium, and almost all uranium adsorbed is desorbed with a solution of Na2CO3. Thus the immobilized cells of Streptomyces and Chlorella can be used repeatedly in adsorption-desorption process.Studies on the Accumulation of Heavy Metal Elements in Biological Systems. XXI  相似文献   

3.
A newly isolated denitrifying strain, Rhodobacter sphaeroides NII2 was immobilized in polyvinyl alcohol (PVA) gel, and the properties of the cells in the gel were examined. The immobilized cells had low or almost no denitrification activity, but the cells were activated by incubation in light with culture medium for denitrification containing 0.5% nitrate and no other nitrogen source. Cells grown in the dark were activated by incubation at an earlier stage and to a higher rate than the light-grown cells. The activation was markedly enhanced in the PVA gel with a low cell concentration. The immobilized cells consumed nitrate with a temporary accumulation of NO2 and evolved nitrogen gas. The immobilized cells could use various organic compounds as electron donors for denitrification. Thus, the immobilized cells were applied to a continuous treatment of synthetic wastewater using an aparatus devised by this laboratory. The results showed an efficient removal of NO3-N from the test water.  相似文献   

4.
Kluyveromyces marxianus cells with inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) activity have been immobilized in open pore gelatin pellets with retention of > 90% of the original activity. The open pore gelatin pellets with entrapped yeast cells were obtained by selective leaching out of calcium alginate from the composite matrix, followed by crosslinking with glutaraldehyde. Enzymatic properties of the gelatin-entrapped cells were studied and compared with those of the free cells. The immobilization procedure did not alter the optimum pH of the enzymatic preparation; the optimum for both free and immobilized cells was pH 6.0. The optimum temperature of inulin hydrolysis was 10°C higher for immobilized cells. Activation energies for the reaction with the free and immobilized cells were calculated to be 6.35 and 2.26 kcal mol?1, respectively. Km values were 8 mM inulin for the free cells and 9.52 mM for the immobilized cells. The thermal stability of the enzyme was improved by immobilization. Free and immobilized cells showed fairly stable activities between pH 4 and 7, but free cell inulinase was more labile at pH values below 4 and above 7 compared to the immobilized form. There was no loss of enzyme activity of the immobilized cells on storage at 4°C for 30 days. Over the same period at room temperature only 6% of the original activity was lost.  相似文献   

5.
Capsaicin, from green pepper fruits is used in formulated foods and in pharmaceuticals. Cell cultures of Capsicum annuum L. were obtained from seedlings on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and kinetin. In vitro-grown cells and placental tissues from fruits were immobilized in calcium alginate. Immobilized cells and placental tissues produced capsaicin which leached out into the medium. Immobilized placental tissue exhibited greater potentiality for capsaicin synthesis than immobilized cells. Production reached a level of 1345 μg capsaicin g−1 of immobilized placenta on the 14th day of culture. Production of capsaicin, on replenished nutrient medium in immobilized placenta was 2400 μg on the 30th day. Ferulic acid fed to immobilized placenta at 2.5 mM level increased capsaicin production by 2-fold by the 5th day of the culture period. Of the elicitors used, curdlan was effective on capsaicin production in immobilized cells. Extracts of Aspergillius niger and Rhizopus oligosporus stimulated capsaicin production in immobilized placental tissues.  相似文献   

6.
Summary Clostridium butyricum was immobilized in a porous carrier (acetylcellulose filter) with agar. Addition of peptone to the reaction mixture increased the hydrogen productivity from glucose. The number of cells in the agaracetylcellulose increased during incubation in the medium containing glucose and peptone, and the immobilized growing cells converted 45% of the glucose to hydrogen. Riboflavin enhanced the hydrogen productivity and the lactate produced by the native cells decreased remarkably. Therefore, the immobilized whole cells incubated with riboflavin were employed for repeated hydrogen production in the medium containing glucose and peptone. The hydrogen productivity of the immobilized cells increased markedly after repeated use, and the immobilized cells produced hydrogen in stoichiometric amounts from glucose.  相似文献   

7.
Thermophilic methane-producing bacteria isolated from a wastewater treatment facility have been immobilized in acetylcellulose filter with agar. The immobilized cells produced methane from wastewaters in rich organic acid (acetic, propionic and butyric acids) at the rate of 1.4 μmol mg protein−1 h−1. The optimum conditions for methane production by immobilized whole cells were 52–55°C and pH 7.0–8.0. The immobilized cells retained 80% of the initial activity after exposure to air. The immobilized thermophilic bacteria produced methane continuously over 10 days at 52°C.  相似文献   

8.
Abstract Morphological and physiological properties of Tetrahymena thermophila immobilized by encapsulation in calcium-alginate hollow spheres were found to be substantially different from those of suspended cells. Immobilized T. thermophila reached lengths of 70–100 μm, whereas the average cell of suspension cultures was about 40 μm long. Suspended cells appeared typically pear-shaped while immobilized cells developed a proboscis-like anterior end. Contrary to suspended T. thermophila , encapsulated cells were functionally deficient in phagocytosis although developing an oral apparatus. The diameter of the macronucleus of immobilized cells was about two times larger than the macronucleus of suspended cells and contained twice as much DNA, while the DNA content of the micronucleus remained unchanged. High cell density fermentations of suspended cells indicated that the alterations observed in immobilized cells were not due to close physical contacts between the cells.  相似文献   

9.
Whole cells from Paracoccus denitrificans IFO 12442 were immobilized with a polyelectrolyte complex composed of potassium poly(vinyl alcohol) sulfate (KPVS) and poly(diallyldimethylammonium chloride) (PDDA) by the following procedures: An excess of PDDA was first mixed with a cell suspension to aggregate cells, then KPVS was added to form a complex with excess PDDA and to entrap the aggregated cells. Electron microscopic analysis showed that the aggregated cells were entrapped or surrounded by an amorphous complex support. The rate of nitrate reduction or carbon consumption by the immobilized cells was almost the same as that by the free cells, as determined by anaerobic incubation using a non-growth medium containing KNO3 as a substrate and potassium aspartate as a carbon source. The immobilized cells exhibited activity at pH 4, at which the free cells lost their activity. The initial activity of the immobilized cells remained stable for at least one month in a phosphate buffer with gentle stirring.  相似文献   

10.
《Phytochemistry》1986,25(7):1621-1624
The production of the diterpenes cryptotanshinone and ferruginol by immobilized cultured cells of Salvia miltiorrhiza was examined. Cryptotanshinone and ferruginol were produced continuously by the immobilized cells. Much of the cryptotanshinone was released into the medium, while most of the ferruginol was retained in the cells. The production of cryptotanshinone and ferruginol by the immobilized cells was about 39% and 61% of those by cell suspensions. Re-use of the immobilized cells for the production of these compounds was also examined.  相似文献   

11.
Summary The degradation rate of hydrocarbons in oily sludge obtained from a flotation unit by free and immobilized cells in shaking flasks and in a stirred tank reactor was investigated. For the biodegration of 3.3% hydrocarbons free cells and cells immobilized on granular clay were used. Free cells needed 7–8 weeks to use 30% of the 3.3% hydrocarbons, whereas with immobilized cells the same result was obtained after 3–4 weeks only. In shaken flasks with high hydrocarbon concentrations (8%), immobilized Candida parapsilosis degraded 90% of the hydrocarbons in the oily sludge within 3 weeks, while free cells degraded only 27.5% in the same period. In degradation experiments with a bioreactor, free and immobilized cells of the isolate ISO-OS BÜ 20 showed better results compared to cultures in shaken flasks due to better aeration and mixing. Free cells degraded 50% of the 5% hydrocarbon-containing oily sludge in 7 weeks, whereas immobilized cells gave the same result after only 4 weeks.Offprint requests to: H.-J. Rehm  相似文献   

12.
淮骏  张书祥 《工业微生物》2011,41(6):99-103
采用海藻酸钠包埋植物乳杆菌并通过测定固定化细胞发酵清液的抑菌效果,优化得到的固定化最佳工艺条件为:海藻酸钠浓度为3%,CaCl2浓度为1.5%,菌悬液体积为3.5 mL(4.0×108 cfu/mL).固定化细胞重复发酵多批次效果良好.固定化细胞发酵条件优化结果表明:最适pH为7.0,最适温度为36℃,培养基中添加0....  相似文献   

13.
Summary Mycelia of Claviceps purpurea CBS 164.59 were immobilized in 2%, 4%, and 8% calcium alginate. Alkaloid production by free cells declined after 60 days, while immobilized cells retained their activity for 200 days. The cumulative alkaloid production for all fermentation cycles using 8% calcium alginate immobilized mycelia was 25 times higher than that from free cells. The best yields of the ergopeptide ergometrine were reached with 4% gel immobilized mycelia, while higher gel concentrations caused a shift in the alkaloid biosynthesis towards high clavine alkaloid production.Beginning with the third cycle of reincubation the immobilized mycelia showed a marked tendency to fragmentize into vacuolated arthrosporoid-like structures and produced violet-black pigments so that the beads recalled sclerotial structures of parasitically living Claviceps.Dedicated to Prof. Dr. K. Esser to his 60th birthday  相似文献   

14.
Summary Suspension-cultured cells of Catharanthus roseus (L.) G. Don were immobilized on glass fibre mats and cultivated in shake flasks. The highly-aggregated immobilized cells exhibited a slower growth rate and accumulated reduced levels of tryptamine and indole alkaloids, represented by catharanthine and ajmalicine, in comparison to cells in suspension. The increased total protein synthesis in immobilized cells suggests a diversion of the primary metabolic flux toward protein biosynthetic pathways and away from other growth processes. In vitro assays for the specific activity of tryptophan decarboxylase (TDC) and tryptophan synthase (TS) suggest that the decreased accumulation of tryptamine in immobilized cells was due to reduced tryptophan biosynthesis. The specific activity of TDC was similar in immobilized and suspension-cultured cells. However, the expression of TS activity in immobilized cells was reduced to less than 25% of the maximum level in suspension-cultured cells. The reduced availability of a free tryptophan pool in immobilized cells is consistent with the reduced TS activity. Reduced tryptamine accumulation, however, was not responsible for the decreased accumulation of indole alkaloids in immobilized cells. Indole alkaloid accumulation increased to a similar level in immobilized and suspension-cultured cells only after the addition of exogenous secolaganin to the culture medium. The addition of tryptophan resulted in increased accumulation of tryptamine, but had no effect on indole alkaloid levels. Reduced biosynthesis of secologanin, the monoterpenoid precursor to indole alkaloids, in immobilized cells is suggested. Immobilization does not appear to alter the activity of indole alkaloid biosynthetic enzymes in our system beyond, and including, strictosidine synthase. Offprint requests to: P. J. Facchini  相似文献   

15.
Fungal cells of Aureobasidium pullulans ATCC 201253 were immobilized by entrapment in chitosan beads, and the immobilized cells were investigated for their ability to produce the polysaccharide pullulan using batch fermentation. The 1% chitosan-entrapped fungal cells were capable of producing pullulan for two cycles of 168 h using corn syrup as a carbon source. Pullulan production by the immobilized cells increased by 1.6-fold during the second production cycle (5.0 g/l) relative to the first production cycle (3.1 g/l) with the difference in production being statistically significant after 168 h. The productivity of the immobilized cells increased during the second production cycle while its pullulan content decreased. The level of cell leakage from the support remained unchanged for both production cycles.  相似文献   

16.
Efficient ATP generation is required to produce glutathione and NADP. Hence, the generation of ATP was investigated using the glycolytic pathway of yeast. Saccharomyces cerevisiae cells immobilized using polyacrylamide gel generated ATP from adenosine, consuming glucose and converting it to ethanol and carbon dioxide. Under optimal conditions, the ATP-generating activity of immobilized yeast cells was 7.0 μmol h?1 ml?1 gel. A column packed with these immobilized yeast cells was used for continuous ATP generation. The half-life of the column was 19 days at a space velocity of (SV) 0.3 h?1 at 30°C. The properties of glutathione- and NADP-producing reactions coupled with the ATP-generating reaction were investigated. Escherichia coli cells with glutathione synthesizing activity and Brevibacterium ammoniagenes cells with NAD kinase activity were immobilized in a polyacrylamide gel lattice. Under optimal conditions, the immobilized E. coli cells and immobilized B. ammoniagenes cells produced glutathione and NADP at the rates of 2.1 and 0.65 μmol h?1 ml?1 gel, respectively, adding ATP to the reaction mixture. In order to produce glutathione and NADP economically and efficiently, the glutathione- and NADP-producing reactions were finally coupled with the ATP-generating reaction catalysed by immobilized S. cerevisiae cells. To compare the productivities of glutathione and NADP, and to compare the efficiency of ATP utilization for the production of these two compounds, the two reactor systems, co-immobilized cell system and mixed immobilized cell system, were designed. As a result, these two compounds were also found to be produced by these two kinds of reactor systems. Using the data obtained, the feasibility and properties of ATP generation by immobilized yeast cells are discussed in terms of the production of glutathione and NADP.  相似文献   

17.
Pretreated cotton towels were used as carriers to immobilize Clostridium acetobutylicum CGMCC 5234 cells for butanol or ABE production from glucose and xylose. Results showed that cell immobilization was a promising method to increase butanol concentration, yield and productivity regardless of the sugar sources compared with cell suspension. In this study, a high butanol concentration of 10.02 g/L with a yield of 0.20 g/g was obtained from 60 g/L xylose with 9.9 g/L residual xylose using immobilized cells compared with 8.48 g/L butanol and a yield of 0.141 g/g with 20.2 g/L residual xylose from 60 g/L xylose using suspended cells. In mixed-sugar fermentation (30 g/L glucose plus 30 g/L xylose), the immobilized cultures produced 11.1 g/L butanol with a yield of 0.190 g/g, which were 28.3% higher than with suspended cells (8.65 g/L) during which 30 g/L glucose was utilized completely using both immobilized and suspended cells while 3.46 and 13.1 g/L xylose maintained untilized for immobilized and suspended cells, respectively. Based on the results, we speculated that immobilized cells showed enhanced tolerance to butanol toxicity and the cultures preferred glucose to xylose during ABE fermentation. Moreover, the cultures showed obvious difference when grown between high initial concentrations of glucose and those of xylose. Repeated-batch fermentations from glucose with immobilized cells showed better long-term stability than from xylose. At last, the morphologies of free and immobilized cells adsorbed on pretreated cotton towels during the growth cycle were examined by SEM.  相似文献   

18.
The kinetic properties of Saccharomyces cerevisiae immobilized on crosslinked gelatin were found to be substantially different from those of the suspended yeast. Batch fermentation experiments conducted in a gradientless reaction system allowed comparison of immobilized cell and suspended cell performance. The specific rate of ethanol production by the immobilized cell was 40-50% greater than for the suspended yeast. The immobilized cells consumed glucose twice as fast as the suspended cells, but their specific growth rate was reduced by 45%. Yields of biomass from the immobilized cell population were lower at one-third the value for the suspended cells. Cellular composition was also affected by immobilization. Measurements of intracellular polysaccharide levels showed that the immobilized yeast stored larger quantities of reserve carbohydrates and contained more structural polysaccharide than did suspended cells. Flow cytometry was used to obtain. DNA, RNA, and protein frequency functions for immobilized and suspended cell populations. These data showed that the immobilized cells have higher ploidy than cells in suspension. The observed changes in immobilized cell metabolism and composition may have arisen from disturbance to the yeast cell cycle by the cell attachment, causing alterations in the normal pattern of yeast bud development, DNA replication, and synthesis of cell wall components.  相似文献   

19.
Summary Several strains of the protein-secreting, Gram negative bacterium Myxococcus xanthus were immobilized in carrageenan beads and the production of extracellular proteins was followed.The extracellular proteolytic activity was enhanced and concentrated in the beads. In contrast, the amount of total protein secreted by the cells was not modified by immobilization, but it was also retained and concentrated in the beads, the more, the harder the gel. The amount of slime produced by the cells did not seem to influence protein retention.Foreign proteins expressed from genes cloned in Myxococcus xanthus chromosome can be secreted into the medium by immobilized recombinant strains. A polygalacturonate lyase, expressed from the pelC gene from Erwinia chrysanthemi was only detectable outside of the beads. The pH 2.5 acid phosphatase expressed from the appA gene from Escherichia coli was secreted by immobilized cells at the same rate than did the free cells. It was predominantly found in the medium outside of the beads which represented a first purification and facilitated the continuous production of this protein by immobilized recombinant cells packed in a reactor.  相似文献   

20.
Enzymatic production of dihydroxyacetone (DHA) was studied by immobilization of the whole cells of acetic acid bacteria capable of oxidizing glycerol to DHA. Acetobacter xylinum A-9 cells immobilized in a polyacrylamide gel were selected as the most favorable enzyme preparation. The enzymatic properties of immobilized cells converting glycerol to DHA were investigated and compared with those of intact cells. The optimum pH for the immobilized cells was broad (4.0 to 5.5), whereas the intact cells had a narrow pH optimum at 5.5. The thermal stability of the immobilized cells was somewhat higher than that of the intact cells. Apparent Km values for glycerol with both intact and immobilized cells were about equal, 6.3 × 10−2 to 6.5 × 10−2 M. The complete conversion of glycerol to DHA was achieved within 40 h under optimum conditions, and pure crystalline DHA was readily isolated from the reaction mixture with over 80% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号