首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

2.
Abstract: The temporal resolution of carbon-fiber microelectrodes has been exploited to examine the plasticity of quantal secretory events at individual adrenal medullary cells. The size of individual quantal events, monitored by amperometric oxidation of released catecholamines, was found to be dependent on the extracellular ionic composition, the secretagogue, and the order of depolarization delivery. Release was observed with either exposure to 60 m M K+ in the presence of Ca2+ or exposure to 3 m M Ba2+ in solutions of different pH, with and without external Ca2+. Ba2+ was demonstrated to induce Ca2+-independent exocytotic release for an extended period of time (>4 min) relative to release induced by K+ (∼30 s), which is Ca2+ dependent. In all cases, simultaneous changes of intracellular divalent cations, monitored by fura-2 fluorescence, accompanied quantal release and had a similar time course. Exocytosis caused by Ba2+ in Ca2+-free medium had a larger mean spike area at pH 8.2 than at pH 7.4. When Ba2+-induced spikes measured at pH 7.4 were compared, the spikes in Ca2+-free medium were found to be broader and shorter but had the same area. Release induced by K+ after exposure to Ba2+ was comprised of larger quantal events when compared with preceding K+ stimulations. Finally, spikes obtained with Ba2+ exposure at an extracellular pH of 5.5 had a different shape than those obtained in more basic solutions. These changes in spike size and shape are consistent with the interactions between catecholamines and other intravesicular components.  相似文献   

3.
4.
Free cytosolic Ca2+ ([Ca2+]cyt) is an ubiquitous second messenger in plant cell signaling, and [Ca2+]cyt elevation is associated with Ca2+-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca2+ channels and their regulation remains limited in planta . A type of voltage-dependent Ca2+-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba2+ and Ca2+, and their activities can be inhibited by micromolar Gd3+. The unitary conductance and the reversal potential of the channels depend on the Ca2+ or Ba2+ gradients across the plasma membrane. The inward whole-cell Ca2+ (Ba2+) current, as well as the unitary current amplitude and NPo of the single Ca2+ channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NPo of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed.  相似文献   

5.
It is well known that the motility of spermatozoa in rainbow trout is suppressed by K+. We showed here that although trout sperm are completely immotile in medium containing 5 mM K+, motility was initiated by the subsequent addition of several mM Ca2+, suggesting that both K+and Ca2+are related to the process of the initiation of sperm motility. It was further found that K+channel blockers tetraethylammonium, nonyltriethylammonium, Ba2+and Cs+, as well as the Ca2+channel blocker verapamil, inhibited the initiation of sperm motility at doses at which these reagents inhibit chnnel-related functions in other cells. However, Na+channel blocker, tetrodotoxin and anion channel blocker 4, 4-diisothiocyatatostilbene-2, 2'-disulfonic acid inhibited the motility only at extremely high doses. These results suggest that transport of K+and Ca2+through ion channels at the plasma membrane of spermatozoa is the first event that triggers the initiation of sperm motility in rainbow trout.  相似文献   

6.
Glial cells are proposed to play a major role in the ionic and osmotic homeostasis in the CNS. Swelling of glial cells contributes to the development of edema in neural tissue under pathological conditions such as trauma and ischemia. In this study, we compared the osmotic swelling characteristics of murine hippocampal astrocytes, cerebellar Bergmann glial cells, and retinal Müller glial cells in acutely isolated tissue slices in response to hypoosmotic stress and pharmacological blockade of Kir channels. Hypoosmotic challenge induced an immediate swelling of somata in the majority of Bergmann glial cells and hippocampal astrocytes investigated, whereas Müller cell bodies displayed a substantial delay in the onset of swelling and hippocampal astroglial processes remained unaffected. Blockade of Kir channels under isoosmotic conditions had no swelling-inducing effect in Müller cell somata but caused a swelling in brain astrocytic somata and processes. Blockade of Kir channels under hypoosmotic conditions induced an immediate and strong swelling in Müller cell somata, but had no cumulative effect to brain astroglial somata. No regulatory volume decrease could be observed in all cell types. The data suggest that Kir channels are differently implicated in cell volume homeostasis of retinal Müller cells and brain astrocytes and that Müller cells and brain astrocytes differ in their osmotic swelling properties.  相似文献   

7.
Abstract: The Shaw-type K+ channel Kv3.1 was stably transfected in human embryonic kidney cells. Voltage dependence of activation, K+ permeability, sensitivity to external tetraethylammonium, and unitary conductance were similar to Kv 3.1 channels expressed transiently in Xenopus oocytes. Kv 3.1 channels appear to be regulated because the protein kinase C activator phorbol 12,13-dibutyrate decreased Kv 3.1 currents. Based on these results, we find that the stable expression of voltage-gated K+ channels in human embryonic kidney cells appears to be well suited for analysis of both biophysical and biochemical regulatory processes.  相似文献   

8.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

9.
The effect of phytochrome on K+ transport in guard cells of Commelina communis L. was studied following stomatal movement and using the K+−channel blockers tetraethylammonium (TEA), Cs+ and quinidine. TEA and quinidine prevented stomatal opening and closure in red light, but not when it was supplemented with far-red. This indicates that channels that can be blocked by TEA and quinidine are regulated by phytochrome. Evidence for a phytochrome effect on K+ leakage through other membranal compartments was also found. These phytochrome effects are modified by temperature. Elevated temperature decreases the involvement of channels and increases K+ transport through other membrane compartments, while low temperature causes channel opening and diminishes K+ leakage. The interaction between phytochrome effects and those of temperature is discussed.  相似文献   

10.
The deep roots and wide branches of the K+-channel family are evident from genome surveys and laboratory experimentation. K+-channel genes are widespread and found in nearly all the free-living bacteria, archaea and eukarya. The conservation of basic structures and mechanisms such as the K+ filter, the gate, and some of the gate's regulatory domains have allowed general insights on animal K+ channels to be gained from crystal structures of prokaryotic channels. Since microbes are the great majority of life's diversity, it is not surprising that microbial genomes reveal structural motifs beyond those found in animals. There are open-reading frames that encode K+-channel subunits with unconventional filter sequences, or regulatory domains of different sizes and numbers not previously known. Parasitic or symbiotic bacteria tend not to have K+ channels, while those showing lifestyle versatility often have more than one K+-channel gene. It is speculated that prokaryotic K+ channels function to allow adaptation to environmental and metabolic changes, although the actual roles of these channels in prokaryotes are not yet known. Unlike enzymes in basic metabolism, K+ channel, though evolved early, appear to play more diverse roles than revealed by animal research. Finding and sorting out these roles will be the goal and challenge of the near future.  相似文献   

11.
Abstract: Elevated concentrations of extracellular K+ increased inositol phosphate accumulation in primary cultures of chick retinal photoreceptors and multipolar neurons. K+-evoked stimulation of inositol phosphate accumulation was greater in photoreceptor-enriched cell cultures than in cultures where multipolar neurons were the predominant cell type. Destroying multipolar neurons, but not photoreceptors, with kainic acid and N -methyl- d -aspartate did not reduce the K+-evoked stimulation of inositol phosphate accumulation. Both of these observations indicate that the observed effects occur in photoreceptor cells. The K+-evoked stimulation of inositol phosphate accumulation was blocked by omitting Ca2+ from the incubation medium or by adding the dihydropyridine-sensitive Ca2+-channel antagonists, nitrendipine and nifedipine. Bay K 8644, a dihydropyridine agonist, stimulated inositol phosphate accumulation and enhanced the effect of K+. ω-Conotoxin GVIA, an inhibitor of N-type Ca2+ channels, had no significant effect on K+-stimulated inositol phosphate accumulation. Pretreatment with pertussis toxin neither blocked K+-evoked inositol phosphate accumulation nor altered the inhibitory effect of nifedipine. K+-evoked inositol phosphate accumulation appears to reflect activation of phosphatidylinositol-specific phospholipase C, as it is inhibited by U-73122. These results indicate that Ca2+ influx through voltage-gated, dihydropyridine-sensitive channels activates phospholipase C in photoreceptor inner segments and/or synaptic terminals.  相似文献   

12.
Abstract: The potential involvement of L- and N-type voltage-sensitive calcium (Ca2+) channels and a voltage-independent receptor-operated Ca2+ channel in the release of adenosine from dorsal spinal cord synaptosomes induced by depolarization with K+ and capsaicin was examined. Bay K 8644 (10 n M ) augmented release of adenosine in the presence of a partial depolarization with K+ (addition of 6 m M ) but not capsaicin (1 and 10 μ M ). This augmentation was dose dependent from 1 to 10 n M and was followed by inhibition of release from 30 to 100 n M . Nifedipine and nitrendipine inhibited the augmenting effect of Bay K 8644 in a dose-dependent manner, but neither antagonist had any effect on release of adenosine produced by K+ (24 m M ) or capsaicin (1 and 10 μ M ) ω-Conotoxin inhibited K+-evoked release of adenosine in a dose-dependent manner but had no effect on capsaicin-evoked release. Ruthenium red blocked capsaicin-induced release of adenosine but had no effect on K+-evoked release. Although L-type voltage-sensitive Ca2+ channels can modulate release of adenosine when synaptosomes are partially depolarized with K+, N-type voltage-sensitive Ca2+ channels are primarily involved in K+-evoked release of adenosine. Capsaicin-evoked release of adenosine does not involve either L- or N-type Ca2+ channels, but is dependent on a mechanism that is sensitive to ruthenium red.  相似文献   

13.
Abstract: Elevated extracellular potassium concentration ([K+]e) has been shown to induce reversal of glial Na+-dependent glutamate uptake in whole-cell patch clamp preparations. It is uncertain, however, whether elevated [K+]e similarly induces a net glutamate efflux from intact cells with a physiological intracellular milieu. To answer this question, astrocyte cultures prepared from rat and mouse cortices were incubated in medium with elevated [K+]e (by equimolar substitution of K+ for Na+), and glutamate accumulation was measured by HPLC. With [K+]e elevations to 60 m M , medium glutamate concentrations did not increase during incubation periods of 5–120 min. By contrast, 45 min of combined inhibition of glycolytic and oxidative ATP production increased medium glutamate concentrations 50–100-fold. Similar results were obtained in both rat and mouse cultures. Studies were also performed using astrocytes loaded with the nonmetabolized glutamate tracer d -aspartate, and parallel results were obtained; no increase in medium d -aspartate content resulted from [K+]e elevation up to 90 m M , whereas a large increase occurred during inhibition of energy metabolism. These results suggest that a net efflux of glutamate from intact astrocytes is not induced by any [K+]e attainable in brain.  相似文献   

14.
Abstract: Ba2+ has multiple effects on presynaptic terminals. The ion inhibits the K+ channels responsible for stabilizing the plasma membrane potential in the same way as previously reported for dendrotoxin and 4-aminopyridine. Secondly, the ion can substitute fully for Ca2+ in supporting KCl-evoked release of glutamate from guinea-pig cerebrocortical synaptosomes. In the latter case, the kinetics of glutamate release in the presence of saturating Ca2+ or Ba2+ are essentially identical. Substantially lower external concentrations of Ba2+ are required to achieve the same release kinetics as with Ca2+. The average internal free Ba2+ concentration attained during KCl depolarization is some 10-fold higher than that for Ca2+. However, because the fura-2 signal reflects predominantly the overflow of divalent cation after dissociation from the release trigger, it is not the valid parameter to compare effectiveness of the cations in triggering glutamate exocytosis. In view of the established inability of Ba2+ to interact with calmodulin, these results are discussed in relation to theories in which Ca2+/calmodulin-dependent protein kinase-mediated phosphorylation is a prerequisite for synaptic vesicle exocytosis.  相似文献   

15.
Abstract: The excitatory amino acid glutamate was previously shown to stimulate aerobic glycolysis in astrocytes by a mechanism involving its uptake through an Na+-dependent transporter. Evidence had been provided that Na+,K+-ATPase might be involved in this process. We have now measured the activity of Na+,K+-ATPase in cultured astrocytes, using ouabain-sensitive 86Rb uptake as an index. l -Glutamate increases glial Na+,K+-ATPase activity in a concentration-dependent manner with an EC50 = 67 µ M . Both l - and d -aspartate, but not d -glutamate, produce a similar response, an observation that is consistent with an uptake-related effect rather than a receptor-mediated one. Under basal conditions, concentration-dependent inhibition of Na+,K+-ATPase activity in astrocytes by ouabain indicates the presence of a single catalytic site with a low affinity for ouabain ( K 0.5 = 113 µ M ), compatible with the presence of an α1 isozyme. On stimulation with glutamate, however, most of the increased activity is inhibited by low concentrations of ouabain ( K 0.5 = 20 n M ), thus revealing a high-affinity site akin to the α2 isozyme. These results suggest that astrocytes possess a glutamate-sensitive isoform of Na+,K+-ATPase that can be mobilized in response to increased neuronal activity.  相似文献   

16.
17.
Potassium ions (K+) are required for plant growth and development, including cell division and cell elongation/expansion, which are mediated by the K+ transport system. In this study, we investigated the role of K+ in cell division using tobacco BY-2 protoplast cultures. Gene expression analysis revealed induction of the Shaker -like outward K+ channel gene, NTORK1 , under cell-division conditions, whereas the inward K+ channel genes NKT1 and NtKC1 were induced under both cell-elongation and cell-division conditions. Repression of NTORK1 gene expression by expression of its antisense construct repressed cell division but accelerated cell elongation even under conditions promoting cell division. A decrease in the K+ content of cells and cellular osmotic pressure in dividing cells suggested that an increase in cell osmotic pressure by K+ uptake is not required for cell division. In contrast, K+ depletion, which reduced cell-division activity, decreased cytoplasmic pH as monitored using a fluorescent pH indicator, SNARF-1. Application of K+ or the cytoplasmic alkalizing reagent (NH4)2SO4 increased cytoplasmic pH and suppressed the reduction in cell-division activity. These results suggest that the K+ taken up into cells is used to regulate cytoplasmic pH during cell division.  相似文献   

18.
Abstract: A continuous enzyme-linked fluorometric assay was used for determining the characteristics for glutamate exocytosis from guinea-pig cerebrocortical synaptosomes. Ca2+-dependent release can be induced not only by K+, but also by the Na+ channel activator veratridine and the Ca2+ ionophore ionomycin. K+-induced release can be inhibited by the Ca2+ channel inhibitor verapamil. Sr2+ and Ba2+ substitute for Ca2+ in promoting K+-induced release. Agents that would be predicted to transform the transvesicular pH gradient into a membrane potential are without effect on glutamate release. However, the protonophore carbonylcy-anide p -trifluoromethoxyphenylhydrazone causes a time-dependent loss of exocytosis that is oligomycin insensitive and may be due to depletion of vesicular glutamate. The Ca2+-independent release of glutamate from the cytosol on depolarization is unchanged or promoted by metabolic inhibitors that lower the ATP/ADP ratio. In contrast, Ca2+-dependent release is ATP dependent and is blocked by the combined inhibition of oxidative phosphorylation and glycolysis.  相似文献   

19.
ABSTRACT. Inhibitors of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-dependent ATPase) calcium pumps were used to investigate the involvement of internal Ca2+ stores in the GTP response in Paramecium . External application of these inhibitors was found to dramatically alter the typical behavioral and electrophysiological responses of Paramecium to extracellular chemical stimulation. In particular, 2.5-di-tert-butylhydroquinone (BHQ) strongly inhibited the backward swimming response of paramecia to externally applied GTP, though it did not inhibit the associated whirling response. BHQ also prolonged the normally brief electrophysiological response of these cells to GTP. BHQ completely blocked the behavioral and electrophysiological responses of Paramecium to extracellular Ba2+, but had no measurable effect on the behavioral or electrophysiological responses of these cells to another depolarizing stimulus, elevated external K+ concentration. These results suggest the involvement of nonciliary Ca2+ ions in the GTP and Ba2+ responses.  相似文献   

20.
Isolated epidermal protoplasts of Commelina communis L. increase in volume in the presence of KCl. Since this swelling is an osmotic phenomenon it reflects K+ influx. ATP slightly decreased the volume of the protoplasts, pointing towards the possibility that K+ uptake is passive. On the other hand abscisic acid (ABA) and sodium orthovanadate increased the swelling, and their effect was reversed by ATP. This may support the suggestion that ABA inhibits the active and ATPase-mediated relase of K+ from epidermal cells. Mg2+-dependent, K+-stimulated ATPase activity was found in the microsomal fraction from epidermal cells. This activity was vandadate sensitive. ABA increased the basal activity in the presence of Mg2+ but inhibited the K+ stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号