首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Starving rats were given complete and tryptophan-deficient amino acid mixtures by stomach tube and were killed from 1 to 7hr. later. The polysome profile in the livers of rats fed with the tryptophan-deficient mixture showed a shift in distribution such that the large aggregates were decreased and the small aggregates were increased, particularly dimers. This polysome shift was reversed when the complete amino acid mixture was given by stomach tube 2hr. after administering the tryptophan-free amino acid mixture. 2. After removal of liver polysomes by centrifugation, some smaller ribosomal aggregates (oligosomes) remaining in suspension were harvested by prolonged centrifugation of the supernatant fluid. A large increase in the dimer population of this fraction was observed in the rats receiving the incomplete mixture. 3. When the polysome and oligosome fractions were incubated with cell sap, an energy-generating system and labelled amino acids dl-[1-(14)C]leucine and l-[Me-(14)C]tryptophan were incorporated into the cell fractions in the ratio 4.5:1. Preparations of polysomes and oligosomes from rats fed with the tryptophan-free amino acid mixture showed a decreased amino acid-incorporating activity compared with particulate preparations made from rats fed with the complete mixture. 4. The yield of free ribosomes prepared from the unfractionated liver microsomes by treatment with iso-octane was 40-50% greater in rats fed with the amino acid mixture deficient in tryptophan. 5. A post-microsomal fraction was prepared from cell sap and was shown to consist of ribosomal sub-units. When the animals were fed with the tryptophan-deficient mixture, there was an increase in content of this post-microsomal fraction and in the ratio 30s RNA/19s RNA. Rats were also given [5-(3)H]orotic acid at the time of feeding with the amino acids. Lack of tryptophan in the mixture caused a decrease in the specific activity of both RNA fractions which affected the 30s RNA more extensively than the 19s RNA. 6. These changes in the distribution and quantity of the cellular components engaged in protein synthesis are discussed in relation to RNA metabolism and amino acid-incorporating activity of the liver cell and their response to feeding with the tryptophan-free amino acid mixture.  相似文献   

2.
Poly(adenylic acid) polymerase was extracted from liver nuclei and mitochondria of rats either fed ad libitum, starved overnight or starved and then re-fed with a complete amino acid mixture for 1-3 h. The enzymes were partially purified and assayed by using exogenous primers. Starvation resulted in an 80% decrease in the total activity of the purified nuclear enzyme, and the mitochondrial enzyme activity diminished to almost zero after overnight starvation. Measurements of the protein content of whole nuclei or mitochondria and of the enzyme extracts from these organelles indicated that the decrease in enzyme activity on starvation was not caused by incomplete extraction of the enzyme from the starved animals. Re-feeding the animals with the complete amino acid mixture increased the total activity of poly(A) polymerase from the nuclei and mitochondria by 1.9-fold and 63-fold respectively. Under these conditions, the total protein content of the nuclei and mitochondria increased by only 13 and 32% respectively. These data indicate that poly(A) polymerase is one of the cellular proteins specifically regulated by amino acid supply.  相似文献   

3.
The uptake of nucleosides and the synthesis of RNA in Tetrahymena thermophila were examined following amino acid starvation. Omission of leucine, phenylalanine, or arginine from the medium resulted in a rapid decrease in the incorporation of [3H]uridine into the acid-soluble pool and acid-insoluble material (RNA). Amino acid starvation inhibited the uptake of all ribo- and deoxyribonucleosides tested but did not affect the uptake of amino acids or glucose. In addition, under the conditions used, the omission of an amino acid did not result in a large decrease in amino acid incorporation into total protein. Treatment of cells with cycloheximide or emetine gave results similar to the effects of amino acid starvation, but in these experiments the inhibition of protein synthesis was essentially complete. Nucleotide pool sizes were also measured following amino acid starvation. ATP and UTP levels were essentially unchanged, but the dTTP pool size was decreased by 40%. The decrease in RNA synthesis in vivo in the absence of an essential amino acid was reflected in the endogenous RNA synthetic activity of isolated nuclei. However, when solubilized RNA polymerase activity was measured with calf thymus DNA as template, no significant difference was observed between control and amino acid-starved cells.  相似文献   

4.
In healthy subjects the administration of an amino acid mixture devoid of tryptophan causes a marked decrease of plasma tryptophan. This is because amino acid mixtures induce protein synthesis and tryptophan in blood is incorporated into newly synthesized proteins. We hypothesized that a tryptophan-free mixture could differently affect plasma tryptophan levels in subjects with an impaired protein synthesis such as chronic liver patients. We studied tryptophan levels after a tryptophan-free amino acid solution in controls and cirrhotics fasting 12 hours. Plasma total tryptophan fell to 91% of the initial level 60 minutes after the administration of the diet, to 71% after 120, and to 50% after 210' in controls. In cirrhotics the solution caused a decrease of plasma tryptophan that began significantly later than in controls, the delay being proportional to the severity of the disease. Cirrhotics were subdivided into two groups in accordance to the Pugh modification of the Child-Turcotte criteria. Total plasma tryptophan was 100% of base line levels after 60', 88% after 120', and 65% after 210' in less severe clinical condition; total plasma tryptophan was 102% of base line levels after 60', 98% after 120', and 75% after 210' in more severe clinical condition.  相似文献   

5.
1. Rat liver tryptophan pyrrolase activity is enhanced by a hormonal-type mechanism during the first 2 days of starvation and by a substrate-type mechanism during the subsequent 2 days. 5-Aminolaevulinate synthase activity is also enhanced during the first 2 days of starvation, but returns thereafter to values resembling those observed in the fed rat. Treatments that prevent or reversé the enhancement of tryptophan pyrrolase activity in 24–48h-starved rats also abolish that of 5-aminolaevulinate synthase activity. Starvation of guinea pigs, which does not enhance the pyrrolase activity, also fails to alter that of the synthase. It is suggested that the decrease in 5-aminolaevulinate synthase activity in 72–96h-starved rats represents negative-feedback repression of synthesis, possibly involving tryptophan participation, whereas the enhancement observed in 24–48h-starved animals is caused by positive-feedback induction secondarily to increased utilization of the regulatory-haem pool by the newly synthesized apo-(tryptophan pyrrolase). 2. Glucose, fructose and sucrose abolish the 24h-starvation-induced increases in rat liver tryptophan pyrrolase and 5-aminolaevulinate synthase activities. Cortisol reverses the glucose effect on 5-aminolaevulinate synthase activity, presumably by enabling pyrrolase to re-utilize the regulatory-haem pool after induction of synthesis of this latter enzyme. 3. The impaired ability of 2-allyl-2-isopropylacetamide to enhance markedly 5-aminolaevulinate synthase activity in 24h-starved rats treated with glucose is associated with a failure of the porphyrogen to cause loss of tryptophan pyrrolase haem. Cortisol restores the ability of the porphyrogen to destroy tryptophan pyrrolase haem and to enhance markedly 5-aminolaevulinate synthase activity, presumably by enhancing tryptophan pyrrolase synthesis and, thereby, its re-utilization of the regulatory-haem pool. It is tentatively suggested that 2-allyl-2-isopropylacetamide destroys the above pool only after it has become bound to (or utilized by) apo-(tryptophan pyrrolase).  相似文献   

6.
1. The livers of rats were perfused in situ with medium containing mixtures of amino acids in multiples of their concentration in normal rat plasma. The incorporation of labelled amino acid into protein of the liver and of the perfusing medium increased with increasing amino acid concentration. During 60min. perfusions, labelling of liver protein reached a plateau, and labelling of medium protein was inhibited when the initial concentration of the amino acid mixture was more than ten times the normal plasma value. 2. Examination of polysome profiles derived from livers perfused without amino acids in the medium showed that the number of large aggregates was decreased and the number of small aggregates, particularly monomers and dimers, was increased with time of perfusion. The addition of amino acids to the perfusion medium reversed this polysome shift to an extent that was dependent on the initial concentration of amino acids. Polysome profiles derived from livers perfused for 60min. with ten times the normal plasma concentration of amino acids were essentially the same as the polysome profiles of normal non-perfused livers. 3. The ability of ribosome preparations from perfused livers to incorporate amino acids into protein in vitro decreased with increasing time of perfusion when no amino acids were added to the medium, but increased as the concentration of amino acids in the perfusion medium was increased. 4. The ability of cell sap from perfused livers to support protein synthesis in vitro was not influenced by the amino acid concentration of the perfusion medium. 5. Livers were perfused for 60min. with medium containing amino acid mixtures at ten times the normal plasma concentration but deficient in one amino acid. Maximal incorporation of labelled amino acid into liver protein, the stability of the polysome profile and the ability of ribosome preparations to incorporate amino acids into protein were found to depend on the presence of 11 amino acids: arginine, asparagine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, threonine, tryptophan and valine. A mixture of these 11 amino acids, at ten times their normal plasma concentration, stimulated the incorporation of labelled amino acid into liver protein, stabilized the polysome profile and increased the ability of ribosome preparations to incorporate amino acids into protein to the same extent as the complete mixture. 6. It is concluded that the availability of certain amino acids plays an important role in the control of protein synthesis, possibly by stimulating the ability of ribosomes to become, and to remain, attached to messenger RNA.  相似文献   

7.
Amino acid control of ribonucleic acid (RNA) synthesis in bacteria is known to be governed genetically by the rel locus. We investigated whether the rel gene of the host would also exert its effect on the regulation of phage-specific RNA synthesis in T4 phage-infected Escherichia coli cells. Since T-even phage infection completely shuts off host macromolecular synthesis, phage RNA synthesis could be followed specifically by the cumulative incorporation of radioactivity from labeled precursors into RNA of infected cells. Labeled uracil was shown to accumulate in phage-specific RNA for 30 to 35 min after infection, a phenomenon which probably reflects an expansion of the labile phage-RNA pool. Amino acid starvation was effected by the use of auxotrophic bacterial strains or thienylalanine. The latter substance is an amino acid analogue which induces a chemical auxotrophy by inhibiting the biosynthesis of phenylalanine, tyrosine, and tryptophan. Phage RNA synthesis was strictly dependent on the presence of amino acids, whereas phage deoxyribonucleic acid synthesis was not. By the use of several pairs of bacterial strains which were isogenic except for the rel gene, it was demonstrated that amino acid dependence was related to the allelic state of this gene. If the rel gene was mutated, amino acid starvation did not restrict phage RNA synthesis.  相似文献   

8.
9.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

10.
In rats, feeding protein free diet for 4 days followed by starvation and then high protein diet induced a biphasic ornithine decarboxylase (EC 4.1.1.17) activity, prolonged thymidine kinase (EC 2.7.1.21) activity and DNA synthesis. In contrast feeding a diet containing casein-equivalent amino acid mixture induced a monophasic ornithine decarboxylase activity, short-lived thymidine kinase activity and DNA synthesis. To maintain prolonged thymidine kinase activity and DNA synthesis high protein diet must be given in the early part of the prereplicative period.  相似文献   

11.
The micro-complement-fixation assay has been demonstrated to be a sensitive assay for flagella which occur in nanogram amounts. By use of this assay, it was found that flagellar synthesis occurs during starvation of Salmonella typhimurium for tryptophan, an amino acid not present in flagellar protein. Under these conditions net ribonucleic acid (RNA) synthesis was reduced to approximately 10% of the control rate. Less than 1 mug of actinomycin D per ml further reduced RNA synthesis to less than 1% of the control rate in a culture sensitized by prior treatment for 5 min at 37 C with 5 x 10(-4)m ethylenediaminetetraacetate in 0.33 m tris(hydroxymethyl)aminomethane-chloride (pH 8.0). In the presence of actinomycin D, no synthesis of flagellar protein could be detected. Analysis of fractions of RNA separated by zone centrifugation indicated that actinomycin D reduces the production of template RNA as well as of ribosomal RNA. This suggests that in S. typhimurium the production of flagellar protein requires the concomitant synthesis of RNA. There is no evidence that a stable messenger RNA specific for flagellar synthesis is present.  相似文献   

12.
Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435-1446. 1966.-During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation.  相似文献   

13.
Ketone-body metabolism after partial hepatectomy in the rat.   总被引:2,自引:2,他引:0       下载免费PDF全文
Fed or 24 h-starved rats were subjected to two-thirds partial hepatectomy or sham-operation and subsequently starved for 4, 14 or 24 h. Despite high plasma fatty acid concentrations, the partially hepatectomized rats failed to respond to post-operative starvation with increased blood and liver ketone-body concentrations or to maintain the high ketone-body concentrations associated with pre-operative starvation. Hypoglycaemia and hyperlactaemia were observed within 30 min of functional hepatectomy, but not partial hepatectomy, of 24 h-starved rats, and, even after a further 24 h starvation of partially hepatectomized rats, blood glucose concentrations were only slightly decreased. The results are discussed with reference to fat oxidation and gluconeogenesis in the liver remaining after partial hepatectomy.  相似文献   

14.
Polysomes were extracted from Bacillus subtilis cells starved for a required amino acid. The monosome peak appeared soon after starvation; no difference in the rate of degradation was detected when the cells were starved for arginine or tryptophan in a double auxotroph. RNA production during starvation was not inhibited by actinomycin, but the molecular weight of the product made in the presence of the antibiotic was much lower. Indications that stable messenger ribonucleic acid is present for up to 90 min after amino acid starvation are also presented.  相似文献   

15.
Eleven Poll Dorset times Merino crossbred female lambs 4 weeks of age were trained to suck liquid diets from bottles. In three separate experiments liquid diets providing 14-2% (expt 1) 10-6% (expt 2) or 8-0% (expt 3) of gross energy as protein and amino acids were fed. Responses in voluntary intake, growth rate and changes in plasma amino acid concentrations were studied when complete or incomplete mixtures of amino acids were added to the liquid diet. These mixtures supplied either: (1) all amino acids in quantities to bring the total of protein plus amino acids to provide more than 20% of dietary gross energy, the amino acids being provided in proportions estimated to meet adequately the lamb's requirements ('complete'); or (2) as the same total amount of amino acids but with the amino acid supplement devoid of threonine ('low-threonine', expts 1 and 2) or isoleucine ('low isoleucine', expt 3). In experiment 1, there was no food intake or growth depression after feeding the amino acid mixture lacking threonine. In both experiments 2 and 3, voluntary food intake was depressed to about 50% of that observed in lambs fed the low protein diet, when the amino acid mixture devoid of threonine or of isoleucine, respectively, was fed. Addition of the missing amino acid to the low threonine and low isoleucine diets resulted in recovery of voluntary intake in experiments 2 and 3 respectively, but no significant improvement above that found after feeding the low protein (basal) diet. In experiments 1 and 2, after feeding the low threonine diet the threonine concentration in the blood plasma decreased markedly, while concentrations of total amino acids were elevated. Although there was no improvement in growth or food intake, the feeding of the diet containing the complete amino acid mixture resulted in an elevation of all essential amino acids including threonin. Similarly in experiment 3, plasma isoleucine concentration decreased in the lambs fed the isoleucine imbalanced diet. Results indicate that the suckled, preruminant lamb exhibits sensitivity to dietary amino acid imbalance, in a manner analogous to that found in simple-stomached animals. These results also clearly illustrate a depression in food intake associated with the deletion of a specific essential nutrient from the diet of the lamb.  相似文献   

16.
A mixture of chemicals was previously devised (3, 3', 5'-triiodo-L-thyronine, amino acids, a butyryl derivative of cyclic adenosine 3':5'-monophosphate, theophylline, and heparin) that induces nuclear DNA replication in the liver of the unoperated rat (Short, J., Tsukada, K., Rudert, W.A. 7 Lieberman, I. (1975) J. Biol. Chem. 250, 3602-3606). The stimulation of DNA synthesis with the complete solution is greater than the sum of the responses to the thyroid hormone alone and to a mixture of the remaining components of the inductive solution alone. The effects of the complete mixture and of parts of it on three parameters involving the hepatocyte nucleolus have now been examined in intact animals. The complete solution increases the level of RNA polymerase I (measured with isolated nuclei), the rate of ribosome synthesis, and the total volume of nucleoli per nucleus. Nucleolar hypertrophy is unique among the three changes in showing a requirement, just as for DNA synthesis, for all or almost all of the components of the complete mixture, including the thyroid hormone, for a maximal effect. Enlargement of nucleoli is detectable as early as 2 hours after the start of treatment with the complete mixture and a large proportion of the total hepatocyte population is involved. Hypertrophy is accompanied by an increase in nucleolar RNA content. N2-Monobutyryl cyclic guanosine 3':5'-monophosphate is not able to substitute for the cyclic adenine nucleotide.  相似文献   

17.
To solve the mechanism for the complete cessation of DNA synthesis in Tetrahymena cells involved in the amino acid starvation, the nature of DNA polymerase activity was investigated in crude enzyme preparations or in toluene-permeabilized specimens. In crude enzyme preparations from growing cells, 3H-TTP incorporation into acid-insoluble products showed little dependency on exogenous DNA template, while incorporation increased markedly in the presence of ATP. These characteristics were very similar to those of replicative DNA synthesis in permeabilized Escherichia coli.Variations of DNA and RNA polymerase activities following transfer of exponentially growing Tetrahymena cells to amino acid-deprived medium showed that in the crude enzyme preparations DNA polymerase activity dropped sharply within 3 h after the transfer and practically no activity was detected thereafter, whereas RNA polymerase activity did not disappear in the same preparations. Such enzyme kinetics coincided well with the kinetics of in vivo synthesis of the corresponding nucleic acid.The cessation of DNA synthesis in the amino acid-starved cells may be due not to the activation of DNase or a soluble polymerase inhibitor, nor to the deficiency of each kind of deoxyribonucleoside triphosphate or magnesium ion or ATP generation system. It follows from this that the cessation of DNA polymerase activity in the starved cells may be due to the deficiency of DNA polymerase or its associated factor(s) as a reflection of short life-span of such a protein.  相似文献   

18.
The hypothesis that incorporation of tryptophan (TRY) into proteins is the mechanism underlying the decrease in plasma and tissue TRY levels after a TRY-free amino acid mixture was investigated. Rats fasted 15 hours were pretreated with saline or with the protein synthesis inhibitor cycloheximide (CHEX) and treated with saline or a TRY-free amino acid mixture. In a first experiment, in saline pretreated rats the TRY-free mixture caused a decrease of 49% in total plasma TRY, of 64% in free plasma TRY, of 66% in brain TRY and of 42% in liver TRY. After 5 mg/kg of CHEX the same TRY-free diet caused a decrease of 5% in total plasma TRY, 14% in free plasma TRY, 18% in brain TRY and 9% in liver TRY. In a second experiment, the TRY-free diet caused a 43% decrease of total plasma TRY in saline pretreated animals and a decrease of 15%, 6% and 2% respectively after the pretreatment with 0.3, 1.0 and 5.0 mg/kg of CHEX. In brain TRY, the TRY-free diet caused a 62% decrease in saline pretreated rats and a decrease of 38%, 20% and 19% respectively after the pretreatment with 0.3, 1.0 and 5.0 mg/kg of CHEX. Since 5.0 mg/kg of CHEX almost completely block protein synthesis and since doses of CHEX from 0.3 to 5.0 mg/kg cause a dose-dependent inhibition of protein synthesis, our data support the hypothesis that protein synthesis is the mechanism through which TRY-free mixtures decrease TRY levels.  相似文献   

19.
20.
Resting lymphocytes are in the G0 phase of the cell cycle. Upon activation by PHA, they progress into G1 with accompanying increased protein and RNA synthesis, initiate DNA synthesis and divide. We have studied the kinetics of inhibition of macromolecular synthesis during activation in the absence of single amino acids. Three types of kinetics are observed. In the absence of tryptophan or isoleucine, stimulated lymphocytes show a normal increase in protein and RNA synthesis during the first 30 hours of stimulation, initiate DNA synthesis but are subsequently inhibited. In phenylalanine-deficient medium, no DNA synthesis occurs in spite of a slight increase in protein synthesis. No increase in macromolecular synthesis is observed in medium lacking any one of the other essential amino acids (eg: lysine). Our results indicate that the kinetics of macromolecular synthesis in tryptophan-deficient medium is the result of a limited reserve of protein-bound tryptophan which becomes exhausted after 30 hours. On the other hand, delayed inhibition of synthesis in isoleucine-deficient medium probably reflects an initially low requirement for this amino acid followed by inhibition of the synthesis of isoleucine-rich proteins involved in some late event of stimulation. Partial deprivation of lysine results in kinetics of protein synthesis similar to that in tryptophan- or isoleucine-deficient media. The results indicate that the kinetics of macromolecular synthesis during activation of lymphocytes in the absence of an essential amino acid is a function of the quantitative requirement for that amino acid, at a given time during stimulation. Upon replacement of lysine, lymphocytes inhibited by lysine deficiency begin RNA and protein synthesis immediately and at a rate faster than that of unstimulated cultures to which PHA is added. They also initiate DNA synthesis earlier and therefore, are closer to the S phase than resting lymphocytes. It is concluded that lymphocytes stimulated in the absence of lysine are activated even though no overall increase in macromolecular synthesis is observed. Furthermore, the kinetics of DNA synthesis following reversal of inhibition by phenylalanine suggests that lymphocytes stimulated during phenylalanine deprivation become arrested at most six hours before S. These results indicate that amino acid deficiencies lead to arrest of activated lymphocytes at various stages of stimulation, depending on how stringent these deficiencies are.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号