首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A new microsporidium is reported infesting the enterocytes of a Haitian patient with AIDS. The stages observed were diplokaryotic cells, sporogonial plasmodia, unikaryotic sporoblasts, and spores. Neither a sporophorous vesicle (pansporoblastic membrane) nor parasitophorous vacuole were differentiated around the developmental stages, which were in direct contact with the host cell cytoplasm. The polar tube (5-6 coils) was differentiated before fission of the sporogonial plasmodium. The mature spores measured 1.5 m?m × 0.5 m?. The spore wall was very thin as the endospore was absent or poorly differentiated. The organism is named Enterocytozoon bieneusi n. g., n. sp. and is assigned to the suborder Apansporoblastina.  相似文献   

2.
Nosemoides syacii n. sp. is a new microsporidian parasite of the stomach, gut and liver of Syacium micrurum (Pisces: Teleostei). It forms whitish, elongate-oval xenomas. All the development stages of the microsporidia are monokaryotic and in direct contact with host cytoplasm. Merogonial and sporogonial plasmodia divide by plasmotomy. Sporogony is polysporous and results in oval spores with a conspicuous posterior vacuole which measured 3.8×2.2 μm (2.9–4.9×1.8–2.7 μm). The polar filament is isofilar and consists of only four to five coils. The polaroplast is made up of an anterior lamellar part and a posterior vesicular part.  相似文献   

3.
The developmental stages of a recently described microsporidian from the nucleus of hematopoietic cells of salmonid fish were found to be unique among the Microsporida. All observed stages, including meronts, sporonts, and spores were in direct contact with the host cell nucleus (principally hematopoietic cells) of chinook salmon (Oncorhynchus tshawytscha). There is no parasitophorous vacuole and sporogony does not involve formation of a pansporoblastic membrane as with other members of the suborder Apansporoblastina. The extrusion apparatus differentiates prior to division of sporogonial plasmodia. The spores are ovoid (1 x 2 microns) and uninucleate, and possess a coiled polar tube with 8-12 turns. Developmental stages of the salmonid microsporidian are similar to those described for Enterocytozoon bieneusi as found in the intestinal mucosa of human AIDS patients. However, the intranuclear development, different cell types, and host infected clearly separate the salmonid and human parasites. Accordingly, the intranuclear parasite of salmonids is given the name Enterocytozoon salmonis n. sp. within the suborder Apansporoblastina.  相似文献   

4.
Only 1 genus (Nucleospora) within 1 family (Enterocytozoonidae) of the Microsporidia contains species that are parasitic within the nuclei of their host cells; to date, all described intranuclear Nucleospora spp. parasitise fish. This study describes the first intranuclear microsporidian parasite of an invertebrate, the European edible crab Cancer pagurus L. (Decapoda: Cancridae). Infected crabs displayed no obvious external signs, and maximum apparent prevalence of infection within a monthly sample was 3.45%. Infected hepatopancreatic tubules were characterised by varying numbers of hypertrophic and eosinophilic nuclei within epithelial cells. Parasite stages appeared as eosinophilic granular accumulations causing margination of host chromatin. In advanced cases, the tubule epithelia degenerated, with parasites and sloughed epithelial cells appearing in tubule lumens. All life stages of the parasite were observed within host nuclei. Uninucleate meronts were not detected, although binucleate stages were observed. Multinucleate plasmodia (sporogonal plasmodia) contained up to 22 nuclei in section, and late-stage plasmodia contained multiple copies of apparatus resembling the polar filament and anchoring disk, apparently associated with individual plasmodial nuclei. As such, aggregation and early assembly of sporoblast components took place within the intact sporogonial plasmodium, a feature unique to the Enterocytozoonidae. Liberation of sporoblasts from plasmodia or the presence of liberated sporoblasts was not observed in this study. However, large numbers of maturing and mature spores (measuring 1.3 +/- 0.02 x 0.7 +/- 0.01 microm) were frequently observed in direct contact with the host nucleoplasm. Considering the shared features of this parasite with microsporidians of the family Enterocytozoonidae, and the unique presence of this parasite within the nucleoplasm of decapod crustacean hepatopancreatocytes, this parasite (Enterospora canceri) is proposed as the type species of a new genus (Enterospora) of microsporidian. Molecular taxonomic work is now required, comparing Enterospora to Enterocytozoon and Nucleospora, the 2 other genera within the Enterocytozoonidae.  相似文献   

5.
6.
The microsporidium Nudispora biformis n. g., n. sp., a parasite of a larva of the damsel fly Coenagrion hastulatum in Sweden, is described based on light microscopic and ultrastructural characteristics. Merogonial stages and sporonts are diplokaryotic. Sporogony comprises meiotic and mitotic divisions, and finally eight monokaryotic sporoblasts are released from a lobed plasmodium. Sporophorous vesicles are not formed. The monokaryotic spores are oval, measuring 1.4–1.8 × 2.8–3.4 μm in living condition. The thick spore wall has a layered exospore, with a median double-layer. The polaroplast has two lamellar parts, with the closest packed lamellae anteriorly. The isofilar polar filament is arranged in 6 (to 7) coils in the posterior half of the spore. Laminar and tubular extracellular material of exospore construction is present in the proximity of sporogonial stages. In addition to normal spores teratological spores are produced. The microsporidium is compared to the microsporidia of the Odonata; its possible relations to the genus Pseudothelohania and to the Thelohania-like microsporidia are discussed. The new genus is provisionally included in the family Thelohaniidae.  相似文献   

7.
ABSTRACT. The microsporidium Janacekia adipophila n. sp., a parasite of Ptychoptera paludosa larvae in Sweden, is described based on light microscopic and ultrastructural characteristics. Merogonial stages and sporonts are diplokaryotic. Merozoites are formed by rosette-like division. Sporonts develop into sporogonial plasmodia with isolated nuclei. These plasmodia give rise to 8–16 sporoblasts by rosette-like budding. A sporophorous vesicle is initiated by the sporogonial plasmodium. Sporoblasts and spores are enclosed in individual sporophorous vesicles. Granular inclusions of the vesicles, visible using light microscopy, discriminate sporogonial stages from stages of the merogony. The monokaryotic, fresh spores are oval with blunt ends, measuring 4.2-6.3 × 9.1-11.2 μm. Macrospores are formed in small numbers. The spore wall has three subdivisions and the exospore is electron-dense. The polaroplast has two parts: closely arranged lamellae anteriorly, wider sac-like compartments posteriorly. The isofilar polar filament, 191–264 nm wide, has 12-13 coils, which are arranged in one layer in the posterior half of the spore. The electron-dense inclusions of the sporophorous vesicle are modified during sporogony, and vesicles with mature spores are traversed by 21–27 nm wide tubules, which connect the exospore with the envelope of the vesicle. The walls of the tubules, the envelope of the vesicles, and the surface layer of the exospore are all identical double-layered structures. The microsporidium is compared to microsporidia of Ptychopteridae and Tipulidae and to related microsporidia of the family Tuzetiidae.  相似文献   

8.
A microsporidan parasite, Ormieresia carcini gen. n., sp. n., was found in the crab, Carcinus mediterraneus Czerniavsky. Its development and fine structure are the subject are the subject of the present study. The life cycle begins with a schizont surrounded by a unit membrane and containing a diplokaryon. The entire process of sporogony takes place in the host musculature. The sporogonic stages are enclosed in the pansporoblastic membrane. In each pansporoblast, sporogony gives rise to 8 sporoblasts; the octonucleate sporogonial plasmodium is lacking. In the course of schizogonic and sporogonic divisions, each kinetic center consists of 2 plaques, one located within and the other outside the nuclear envelope. The dividing sporonts and sporoblasts sevrets "metabolic" substances (granules, tubules) which are depostied in the pansporoblast. The uninucleate spore is long and cylindrical, measuring 19.1 X 2.4 micronm. A rectilinear manubrium traverses the spore. Its posterior end attenuates abruptly into a polar filament with 4 or 5 coils; its anterior end is attached to the polar cap, which is compressed by a double polar ring. The anterior part of the manubrium is surrounded by a polaroplast consisting of a "spongy" (vesicular) and a lamellar zone.  相似文献   

9.
A novel microsporidian parasite is described, which infects the crustacean host Gammarus duebeni. The parasite was transovarially transmitted and feminised host offspring. The life cycle was monomorphic with three stages. Meronts were found in host embryos, juveniles, and in the gonadal tissue of adults. Sporoblasts and spores were restricted to the gonad. Sporogony was disporoblastic giving rise to paired sporoblasts, which then differentiated to form spores. Spores were not found in regular groupings and there was no interfacial envelope. Spores were approximately 3.78 x 1.22 microns and had a thin exospore wall, a short polar filament, and an unusual granular polaroplast. All life cycle stages were diplokaryotic. A region from the parasite small subunit ribosomal RNA gene was amplified and sequenced. Phylogenetic analysis based on these data places the parasite within the genus Nosema. We have named the species Nosema granulosis based on the structure of the polaroplast.  相似文献   

10.
A new genus and species of microsporidia, Andreanna caspii n. gen., n. sp. is described from the mosquito, Ochlerotatus caspius (Pallas) based on ultrastructural morphology, developmental characteristics, and comparative sequence analyses of the small subunit (SSU) ribosomal DNA (rDNA). Parasite development is confined to fat body tissue and infected larvae appear swollen with dull white masses within the thorax and abdomen. Meronts have diplokaryotic nuclei and are delineated by a simple plasmalemma contiguous with the host cell cytoplasm. Merogony occurs by synchronous binary division followed by cytokinesis. Diplokaryotic sporonts undergo meiosis and synchronous nuclear division forming sporogonial plasmodia with two, four and eight nuclei enclosed within a persistent sporophorous vesicle. Cytokinesis of sporogonial plasmodia results in the formation of eight uninucleate spores. The episporontal space of early sporonts is filled with a homogeneous accumulation of electron dense granular inclusions and ovoid vesicles of various dimensions, transforming into an interwoven matrix during the initial phase of sporogenesis. Spores are oval, uninucleate and measure 4.8 ± 0.3 × 3.1 ± 0.4 μm (fixed). The spore wall is 260 μm thick with an irregular exospore consisting of two layers (150-170 μm) and a thinner endospore (90-100 μm). The anchoring disk is well developed and is contiguous with a lamellar polaroplast that occupies the anterior third of the spore and possess more narrow lamellae on the posterior end. The polar filament is gradually tapered and arranged in a single row consisting of six coils ranging from 180 to 150 μm in diameter. The posterior vacuole (posterosome) is moderately sized and filled with a matrix of moderate electron density. Phylogenetic analysis of SSU rDNA from A. caspii and 30 other species of microsporidia including 11 genera parasitic in mosquitoes using maximum parsimony, neighbor joining and maximum likelihood methods showed A. caspii to be a sister group to the clade containing all of the Amblyospora species, including Culicospora, Edhazardia and Intrapredatorus, as well as Culicosporella and Hyalinocysta thus providing strong support for establishment of Andreanna as a separate genus.  相似文献   

11.
A new microsporidium, Liebermannia patagonica n. gen., n. sp., is described from midgut and gastric caecum epithelial cells of Tristira magellanica, an apterous grasshopper species of southern Patagonia, Argentina. L.patagonica is diplokaryotic, apansporoblastic, homosporous, and polysporoblastic. Transitional (from merogony to sporogony) stages and sporonts of L. patagonica were surrounded by host rough endoplasmic reticulum. The ovocylindrical spores measured 2.9 +/- 0.09 x 1.2 +/- 0.04 microm (fresh, n = 50), and they had an isofilar polar filament of only three coils and a cluster of tubules instead of a classical posterior vacuole. Prevalence was high (up to 80.6%) at the type locality for the four years sampled . Maximum likelihood , neighbor joining, maximum parismony analyses of the small submit rDNA all placed L.patagonica(Accession No. DQ 239917) in one with Orthosomella operophterae.  相似文献   

12.
The life cycle stages of a new species of the genus Vavraia (Microsporidia, Pleistophoridae), which parasitizes the shrimp Crangon crangon (Crustacea, Decapoda), were examined by light and electron microscopy. This parasite was monomorphic with polysporous sporogony and developed in the skeletal muscle of the host. The multinucleate sporogonial plasmodium divided by plasmotomy and multiple division into uninucleate sporoblasts. All stages were surrounded by a thick and amorphous dense coat external to the plasmalemma. This structure gradually became a merontogenetic sporophorous vacuole (MSV) where the sporonts developed into sporoblasts. The MSV was filled with episporontal granular secretory products and eventually contained up to 50 uninucleate spores. During spore morphogenesis, these episporontal granular products within the MSV became organized as episporontal tubular-like structures. In transverse sections, these structures showed a mean diameter of 1.0 microm, but disappeared during the final phase of the spore maturation. Mature spores were ellipsoidal to slightly pyriform and measured 2.30 x 1.41 microm. The polar filament was anisofilar and consisted of a single coil with six to seven turns (rarely five). This new species is named Vavraia mediterranica n. sp.  相似文献   

13.
Cryptosporidium molnari n. sp. is described from two teleost fish, the gilthead sea bream (Sparus aurata L.) and the European sea bass (Dicentrarchus labrax L.). The parasite was found mainly in the stomach epithelium and seldom in the intestine. Oocysts were almost spherical, with four naked sporozoites and a prominent residuum, and measured 3.23-5.45 x 3.02-5.04 (mean 4.72 x 4.47) microm in the type host, gilthead sea bream (shape index 1-1.17, mean 1.05). Sporulation was endogenous, as fully sporulated oocysts were found within the fish, both in the stomach epithelium and lumen, and in faeces. Oocysts and other stages of C. molnari fit most of the diagnostic features of the genus Cryptosporidium, but differ from hitherto described species, including piscine ones. All stages were located within a host contributed parasitophorous vacuole lined by a double host microvillar membrane. Merogonial and gamogonial stages appeared in the typical extracytoplasmic position, whereas oogonial and sporogonial stages were located deeply within the epithelium. Ultrastructural features, including the characteristic contact zone of the parasite with the host epithelial surface, were mostly coincident with those of other Cryptosporidium spp. Mitochondria were found in dividing meronts, merozoites, microgamonts and sporozoites. Pathological effects were more evident in gilthead sea bream, which also exhibited a clearly higher prevalence (24.4 versus 4.64% in sea bass). External clinical signs, consisting of whitish faeces, abdominal swelling and ascites, were rarely observed, in contrast with important histopathological damage. The wide zones of epithelium invaded by oogonial and sporogonial stages appeared necrotic, with abundant cell debris, and sloughing of epithelial cells, which detached to the lumen. No inflammation reaction was observed and the cellular reaction was limited to the cells involved in the engulfing of intraepithelial stages and debris, probably macrophages.  相似文献   

14.
A microsporidium with ultrastructural characteristics of the genus Vavraia was found in the fat body of an adult specimen of Culicoides edeni (Diptera: Ceratopogonidae) collected in northern Florida. The sporogonial stages developed within sporophorous vesicles, which contained variable numbers of oval spores at maturity. The wall of the sporophorous vesicle was composed of two electron-dense outer layers and an electron-lucent intermediate layer. Sporonts contained haplokaryotic nuclei and divided by rosette formation. Mature spores had anisofilar polar filaments and measured 3.8 +/- 0.28 microns in length and 2.2 +/- 0.16 microns in width in thick sections of resin-embedded material. This is the first report of a Vavraia sp. from a species of Culicodes.  相似文献   

15.
An unusual xenoma-forming microsporidium was discovered in the central nervous system of moribund zebrafish from a laboratory colony in Eugene, Oregon. Infected fish were often emaciated and lethargic, and histological examination commonly revealed severe myelitis and myositis associated with the infection. Based on its structure, development, and small subunit ribosomal DNA sequence it is unique among fish microsporidia. Spores are uninucleate, ovoid to pyriform, with a prominent posterior vacuole. Spores average 5.4 x 2.7 microm with 13-16 coils of the polar filament. The microsporidium produces xenomas within the spinal cord and hindbrain of fish, and xenomas contained sporophorous vesicles with up to 16 spores. Sporoblasts and presporoblast stages (probably sporonts) are found occasionally in small aggregates dispersed randomly throughout xenomas. It clustered in the "Ichthyosporidium group" along with other fish microsporidian genera based on rDNA sequence analysis. The rDNA sequence of the zebrafish microsporidium was most similar to that of Ichthyosporidium, but showed only 12.1% similarity and therefore this microsporidium can be considered a distinct genus and species, which we have named Pseudoloma neurophilia n. g., n. sp.  相似文献   

16.
ABSTRACT. Pyrotheca hydropsycheae n. sp. is described from caddis fly larvae, Hydropsyche siltalai Döhler, 1963. All stages were found in oenocytes and fat body cells. Meronts were uni- or binucleate with simple surface membranes. The sporogonic stages were recognized ultrastructurally by the separation of an envelope, the sporophorous vesicle, from their surfaces. Mature sporogonial plasmodia were tetranucleate and gave rise by longitudinal fission to four uninucleate elongate sporoblasts with polar nuclei. Spores were lageniform with an inflated posterior end, containing the polar tube coils and the nucleus, and a narrow anterior section comprising two-thirds of the length, containing the polaroplast and straight part of the polar tube. The polaroplast consisted of an anterior region of loosely packed membranes arranged as partitions at angles to one another and a posterior region of increasingly closely packed parallel membranes. The spore wall consisted of an electron-dense exospore with a fuzzy coat and a thin electron-lucent endospore. All four spores derived from a sporont faced in the same direction in the sporophorous vesicle. Spores measured 8.7 μm long and extruded polar filaments were about 20 μm.  相似文献   

17.
Nosema tyriae n.sp. was found in 63% of a population of Cinnabar moth larvae (Tyria jacobaeae). The infection was found in the gut wall, silk glands, and fat body and was probably generalized but appeared to be of low pathogenicity. Merogony and sporogony were by binary fission of diplokaryotic stages. Fresh spores were elongate, slightly pointed at the anterior end, and measured 4.7 x 2.0 microm. Ultrastructural features of special interest were 20-nm tubules connecting the surface of sporonts with host cell cytoplasm and, in the spores, a deeply domed polar sac, polaroplast consisting of closely packed longitudinally arranged membranes and loosely packed horizontally arranged membranes, and 10.5-14 coils of the polar tube in a single rank. The 16S rRNA genes of N. tyriae and Nosema bombycis from silkworms, Bombyx mori, differed by only six nucleotides and N. tyriae spores gave a moderately positive reaction with a monoclonal antibody raised to N. bombycis. N. tyriae was infective to B. mori but was less virulent than N. bombycis. However, no amplification product was obtained by PCR using N. tyriae DNA and primers considered to be specific for N. bombycis. Also, the spores of the two species are of entirely different shapes. A second diplokaryotic microsporidium, Nosema sp., found as a light infection in only one of the larvae had much smaller developmental stages and spores measuring 3.8 x 2.0 microm (fixed). Ultrastructurally it was distinguished by an abundance of dense membranes in cytoplasmic vesicles in both meronts and sporonts. Spores with up to 15 coils of the polar tube in irregular clusters or with about 12 coils in a single rank were observed in the tissues fixed from the one larva infected with this parasite. As this larva had been kept with N. tyriae-infected larvae for a few days before examination, it is possible that the two types of spores resulted from a double infection.  相似文献   

18.
This report provides a detailed ultrastructural study of the life cycle, including proliferative and sporogonic developmental stages, of the first Pleistophora species (microsporidium) obtained from an immune-incompetent patient. In 1985, the organism obtained from a muscle biopsy was initially identified as belonging to the genus Pleistophora, based on spore morphology and its location in a sporophorous vesicle. Since that initial report, at least two new microsporidial genera, Trachipleistophora and Brachiola, have been reported to infect the muscle tissue of immunologically compromised patients. Because Trachipleistophora development is similar to Pleistophora, and as Pleistophora was only known to occur in cold-blooded hosts, the question of the proper classification of this microsporidium arose. The information acquired in this study makes it possible to compare Pleistophora sp. (Ledford et al. 1985) to the known human infections and properly determine its correct taxonomic position. Our ultrastructural data have revealed the formation of multinucleate sporogonial plasmodia, a developmental characteristic of the genus Pleistophora and not Trachipleistophora. A comparison with other species of the genus supports the establishment of a new species. This parasite is given the name Pleistophora ronneafiei n. sp.  相似文献   

19.
ABSTRACT. Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life‐cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle‐I) and in the nuclei of epidermal cells (Cycle‐II), respectively. Cycle‐I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle‐II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus.  相似文献   

20.
Vavraia lutzomyiae (Microsporida; Pleistophoridae) is a new species parasitic in the tropical phlebotomine sandfly, Lutzomyia longipalpis (Diptera, Psychodidae, Phlebotominae), a major vector of Leishmania chagasi in Latin America where human visceral leishmaniasis is endemic. Infected larvae and pupae were parasitized in the abdomen, and some adults were parasitized in Malpighian tubules and midgut. The sporogonial plasmodium divided by multiple divisions into up to 64 uninucleate sporoblasts. These stages were surrounded outside the plasmalemma by a thick, amorphous dense coat and transformed into a merontogenetic sporophorous vesicle within which the sporonts developed into sporoblasts. The mature microsporidian spores were broadly ellipsoidal and measured 6.1+/-0.43 x 3.1+/-0.15 microm. The spore wall consisted of a transparent endospore (approximately 100 nm) and a thin electron dense exospore (approximately 30 nm) with the outer limit slightly undulated. Spores contained a polar filament arranged peripherally in a single layer of eight to nine wide anterior coils (approximately 125 nm diameter), and three to four narrow posterior coils (approximately 70 nm diameter). Transverse sections revealed a concentric layer organization with the internal layer surrounded by numerous (up to 25) longitudinal microfibrils. The angle of tilt of the polar filament was about 65-68 degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号