首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freezing temperatures strongly influence vegetation in the hottest desert of North America, in part determining both its overall boundary and distributions of plant species within. To evaluate recent variability of freezing temperatures in this context, minimum temperature data from weather stations in the Sonoran Desert are examined. Data show widespread warming trends in winter and spring, decreased frequency of freezing temperatures, lengthening of the freeze‐free season, and increased minimum temperatures per winter year. Local land use and multidecadal modes of the global climate system such as the Pacific decadal oscillation and the Atlantic multidecadal oscillation do not appear to be principal drivers of this warming. Minimum temperature variability in the Sonoran Desert does, however, correspond to global temperature variability attributed to human‐dominated global warming. With warming expected to continue at faster rates throughout the 21st century, potential ecological responses may include contraction of the overall boundary of the Sonoran Desert in the south‐east and expansion northward, eastward, and upward in elevation, as well as changes to distributions of plant species within and other characteristics of Sonoran Desert ecosystems. Potential trajectories of vegetation change in the Sonoran Desert region may be affected or made more difficult to predict by uncertain changes in warm season precipitation variability and fire. Opportunities now exist to investigate ecosystem response to regional climate disturbance, as well as to anticipate and plan for continued warming in the Sonoran Desert region.  相似文献   

2.
Kelp ecosystems form widespread underwater forests playing a major role in structuring the biodiversity at a regional scale. Some seaweeds such as Laminaria digitata are also economically important, being exploited for their alginate and iodine content. Although some studies have shown that kelp ecosystems are regressing and that multiple causes are likely to be at the origin of the disappearance of certain populations, the extent to which global climate change may play a role remains speculative. Here we show that many populations of L. digitata along European coasts are on the verge of local extinction due to a climate-caused increase in sea temperature. By modeling the spatial distribution of the seaweed, we evaluate the possible implications of global climate change for the geographical patterns of the species using temperature data from the Coupled Model Intercomparison Project phase 5 (CMIP5). Projections of the future range of L. digitata throughout the 21st century show large shifts in the suitable habitat of the kelp and a northward retreat of the southern limit of its current geographic distribution from France to Danish coasts and the southern regions of the United Kingdom. However, these projections depend on the intensity of warming. A medium to high warming is expected to lead to the extirpation of the species as early as the first half of the 21st century and there is high confidence that regional extinction will spread northwards by the end of this century. These changes are likely to cause the decline of species whose life cycle is closely dependent upon L. digitata and lead to the establishment of new ecosystems with lower ecological and economic values.  相似文献   

3.
A noticeable increase in mean temperature has already been observed in Switzerland and summer temperatures up to 4.8 K warmer are expected by 2090. This article reviews the observed impacts of climate change on biodiversity and considers some perspectives for the future at the national level.The following impacts are already evident for all considered taxonomic groups: elevation shifts of distribution towards mountain summits, spread of thermophilous species, colonisation by new species from warmer areas and phenological shifts. Additionally, in the driest areas, increasing droughts are affecting tree survival and fish species are suffering from warm temperatures in lowland regions. These observations are coherent with model projections, and future changes will probably follow the current trends.These changes will likely cause extinctions for alpine species (competition, loss of habitat) and lowland species (temperature or drought stress). In the very urbanised Swiss landscape, the high fragmentation of the natural ecosystems will hinder the dispersal of many species towards mountains. Moreover, disruptions in species interactions caused by individual migration rates or phenological shifts are likely to have consequences for biodiversity. Conversely, the inertia of the ecosystems (species longevity, restricted dispersal) and the local persistence of populations will probably result in lower extinction rates than expected with some models, at least in 21st century. It is thus very difficult to estimate the impact of climate change in terms of species extinctions. A greater recognition by society of the intrinsic value of biodiversity and of its importance for our existence will be essential to put in place effective mitigation measures and to safeguard a maximum number of native species.  相似文献   

4.
Shallow marine calcifiers play an important role as marine ecosystem engineers and in the global carbon cycle. Understanding their response to warming is essential to evaluate the fate of marine ecosystems under global change scenarios. A rare opportunity to test the effect of warming acting on natural ecosystems is by investigation of heat‐polluted areas. Here, we study growth and calcification in benthic foraminifera that inhabit a thermally polluted coastal area in Israel, where they are exposed to elevated temperatures reaching up to ~42°C in summer. Live specimens of two known heat‐tolerant species Lachlanella sp. 1 and Pararotalia calcariformata were collected over a period of 1 year from two stations, representing thermally polluted and undisturbed (control) shallow hard bottom habitats. Single‐chamber element ratios of these specimens were obtained using laser ablation, and the Mg/Ca of the most recently grown final chambers were used to calculate their calcification temperatures. Our results provide the first direct field evidence that these foraminifera species not only persist at extreme warm temperatures but continue to calcify and grow. Species‐specific Mg/Ca thermometry indicates that P. calcariformata precipitate their shells at temperatures as high as 40°C and Lachlanella sp. 1 at least up to 36°C, but both species show a threshold for calcification at cold temperatures: calcification in P. calcariformata only occurred above 22°C and in Lachlanella sp. 1 above 15°C. Our observations from the heat‐polluted area indicate that under future warming scenarios, calcification in heat‐tolerant foraminifera species will not be inhibited during summer, but instead the temperature window for their calcification will be expanded throughout much of the year. The observed inhibition of calcification at low temperatures indicates that the role of heat‐tolerant foraminifera in carbonate production will most likely increase in future decades.  相似文献   

5.
Field transplants reveal summer constraints on a butterfly range expansion   总被引:1,自引:0,他引:1  
Crozier LG 《Oecologia》2004,141(1):148-157
The geographic ranges of most species are expected to shift to higher elevations and latitudes in response to global warming. But species react to specific environmental changes in individualistic ways, and we are far from a detailed understanding of range-shifts. Summer temperature often limits the ranges of insects and plants, so many range-shifts are expected to track summer warming. I explore this potential range-limiting factor in a case study of a northwardly expanding American butterfly, Atalopedes campestris (Lepidoptera, Hesperiidae). This species has recently colonized the Pacific Northwest, USA, where the mean annual temperature has risen 0.8–1.8°C over the past 100 years. Using field transplant experiments across the current range edge, I measured development time, survivorship, fecundity and predation rates along a naturally occurring thermal gradient of 3°C. Development time was significantly slower outside the current range in eastern Washington (WA), as expected because of cooler temperatures there. Slower development would reduce the number of generations possible per year outside the current range, dramatically lowering the probability that a population could survive there. Differences in survivorship, fecundity and predation rate across the range edge were not significant. The interaction between summer and winter temperature appears to be crucial in defining the current range limit. The estimated difference in temperature required to affect the number of generations is greater than the extent of summer warming observed over the past century, however, and thus historically winter temperature alone probably limited the range in southeastern WA. Nonetheless, extraordinarily warm summers may have improved colonization success, increasing the probability of a range expansion. These results suggest that extreme climatic events may influence rates of response to long-term climate change. They also demonstrate that range-limiting factors can change over time, and that the asymmetry in seasonal warming trends will have biological consequences.  相似文献   

6.
The Mediterranean Sea is a hotspot of biodiversity, and climate warming is expected to have a significant influence on its endemic fish species. However, no previous studies have predicted whether fish species will experience geographic range extensions or contractions as a consequence of warming. Here, we projected the potential future climatic niches of 75 Mediterranean Sea endemic fish species based on a global warming scenario implemented with the Mediterranean model OPAMED8 and a multimodel inference, which included uncertainty. By 2070–2099, the average surface temperature of the Mediterranean Sea was projected to warm by 3.1 °C. Projections for 2041–2060 are that 25 species would qualify for the International Union for the Conservation of Nature and Natural Resources (IUCN) Red List, and six species would become extinct. By 2070–2099, 45 species were expected to qualify for the IUCN Red List whereas 14 were expected to become extinct. By the middle of the 21st century, the coldest areas of the Mediterranean Sea (Adriatic Sea and Gulf of Lion) would act as a refuge for cold‐water species, but by the end of the century, those areas were projected to become a ‘cul‐de‐sac’ that would drive those species towards extinction. In addition, the range size of endemic species was projected to undergo extensive fragmentation, which is a potentially aggravating factor. Since a majority of endemic fishes are specialists, regarding substratum and diet, we may expect a reduced ability to track projected climatic niches. As a whole, 25% of the Mediterranean Sea continental shelf was predicted to experience a total modification of endemic species assemblages by the end of the 21st century. This expected turnover rate could be mitigated by marine protected areas or accelerated by fishing pressure or competition from exotic fishes. It remains a challenge to predict how these assemblage modifications might affect ecosystem function.  相似文献   

7.
The marine life of Canada’s Pacific marine ecosystems, adjacent to the province of British Columbia, may be relatively responsive to rapid oceanographic and environmental change associated with global climate change due to uniquely evolved plasticities and resiliencies as well as particular sensitivities and vulnerabilities, given this dynamic and highly textured natural setting. These marine ecosystems feature complex interfaces of coastal geomorphology, climate, and oceanography, including a dynamic oceanographic and ecological transition zone formed by the divergence of the North Pacific Current into the Alaskan coastal current and the California Current, and by currents transporting warm tropical waters from the south. Despite long-term warming in the region, sea surface temperatures in Canada’s Pacific have been anomalously cool since 2007 with La Niña-type conditions prevailing as we enter a cool phase of the Pacific Decadal Oscillation, possibly masking future warming. When warmer El Niño conditions prevail, many southern species invade, strongly impacting local species and reorganizing biological communities. Acidification and deoxygenation are anomalously high in the region due to the weakening ventilation of subsurface waters resulting from increased stratification. A broad spectrum of biological responses to these changes are expected. Non-climate anthropogenic stressors affect the capacity of biota to adapt to climate changes. It will be challenging to forecast the responses of particular species, and to map climate vulnerabilities accurately enough to help prioritize and guide adaptation planning. It will be more challenging to develop forecasts that account for indirect effects within biological communities and the intricate and apparently non-deterministic behaviours of highly complex and variable marine ecosystems, such as those of Canada’s Pacific. We recommend and outline national and regional climate assessments in Canada and adaptation planning and implementation including integrated coastal management and marine spatial planning and management.  相似文献   

8.
Changes in climate, in combination with intensive exploitation of marine resources, have caused large‐scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient‐climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat‐dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod‐dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem‐based management context.  相似文献   

9.
We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models to investigate how changing thermal regimes could influence the future distribution and persistence of native Yellowstone cutthroat trout (YCT) and competing invasive species. We find that stream temperatures during the recent decade (2000–2009) surpass the anomalously warm period of the 1930s. Climate simulations indicate air temperatures will warm by 1 °C to >3 °C over the Greater Yellowstone by mid‐21st century, resulting in concomitant increases in 2050–2069 peak stream temperatures and protracted periods of warming from May to September (MJJAS). Projected changes in thermal regimes during the MJJAS growing season modify the trajectories of daily growth rates at all elevations with pronounced growth during early and late summer. For high‐elevation populations, we find considerable increases in fish body mass attributable both to warming of cold‐water temperatures and to extended growing seasons. During peak July to August warming, mid‐21st century temperatures will cause periods of increased thermal stress, rendering some low‐elevation streams less suitable for YCT. The majority (80%) of sites currently inhabited by YCT, however, display minimal loss (<10%) or positive changes in total body mass by midcentury; we attribute this response to the fact that many low‐elevation populations of YCT have already been extirpated by historical changes in land use and invasions of non‐native species. Our results further suggest that benefits to YCT populations due to warmer stream temperatures at currently cold sites could be offset by the interspecific effects of corresponding growth of sympatric, non‐native species, underscoring the importance of developing climate adaptation strategies that reduce limiting factors such as non‐native species and habitat degradation.  相似文献   

10.
Tropical invertebrates are currently living very close to their optimal temperature. Warming due to global climate change will likely exceed their physiological optima and have deleterious consequences for insects living at low latitudes. In this study, we assess the effects of various levels of summer warming predicted for the late 21st century (+1.2 and +3.7 °C, with the same diel oscillation as the current regime) on the physiology and demography of the aphid Myzus varians Davidson (Hemiptera: Aphididae) in subtropical and tropical Taiwan. Aphids subjected to a moderate (3.7 °C) increase in temperature did not reach adulthood and thus left no offspring, meaning that wild populations could go extinct during the summer. Slight (+1.2 °C) warming did not significantly affect development time and generation time. However, warming reduced nymphal survival, adult longevity, and reproduction, and, thus, reduced the fitness of aphid populations. Aphids have a number of adaptations for surviving or avoiding unfavorable conditions. However, predicted increases in global temperatures will likely decrease their survival and reproduction, which could increase the frequency of local extinction.  相似文献   

11.
The vulnerability and adaptation of major agricultural crops to various soils in north‐eastern Austria under a changing climate were investigated. The CERES crop model for winter wheat and the CROPGRO model for soybean were validated for the agrometeorological conditions in the selected region. The simulated winter wheat and soybean yields in most cases agreed with the measured data. Several incremental and transient global circulation model (GCM) climate change scenarios were created and used in the study. In these scenarios, annual temperatures in the selected region are expected to rise between 0.9 and 4.8 °C from the 2020s to the 2080s. The results show that warming will decrease the crop‐growing duration of the selected crops. For winter wheat, a gradual increase in air temperature resulted in a yield decrease. Incremental warming, especially in combination with an increase in precipitation, leads to higher soybean yield. A drier climate will reduce soybean yield, especially on soils with low water storage capacity. All transient GCM climate change scenarios for the 21st century, including the adjustment for only air temperature, precipitation and solar radiation, projected reductions of winter wheat yield. However, when the direct effect of increased levels of CO2 concentration was assumed, all GCM climate change scenarios projected an increase in winter wheat yield in the region. The increase in simulated soybean yield for the 21st century was primarily because of the positive impact of warming and especially of the beneficial influence of the direct CO2 effect. Changes in climate variability were found to affect winter wheat and soybean yield in various ways. Results from the adaptation assessments suggest that changes in sowing date, winter wheat and soybean cultivar selection could significantly affect crop production in the 21st century.  相似文献   

12.
陆地生态系统野外增温控制实验的技术与方法   总被引:1,自引:0,他引:1       下载免费PDF全文
朱彪  陈迎 《植物生态学报》2020,44(4):330-339
由于人类活动导致的碳排放急剧增加, 工业革命以来全球地表温度显著增加约1 ℃, 未来全球气候还将持续变暖, 到21世纪末最高可升温4 ℃。这种前所未有的气候变化不仅影响陆地植被的适应策略, 也深刻影响生态系统的结构和功能。其中陆地生态系统碳收支对全球变暖的反馈, 是决定未来气候变化强度的关键因素, 因此全球已经开展了大量的生态系统尺度的野外增温控制实验, 研究生态系统碳收支对气温升高的响应, 从而提高地球系统模型的预测精度。然而由于增温技术和方法的不同, 不同研究的结果之间难以进行比较。该文系统总结了常见的野外增温技术和方法, 包括主动增温和被动增温, 阐述了其优缺点、适用对象以及相关研究成果。同时简要介绍了野外增温控制实验的前沿研究方向——新一代野外增温技术(包括全土壤剖面增温和全生态系统增温)和基于新一代增温技术开展的野外增温联网实验。  相似文献   

13.
The stress–size hypothesis predicts that smaller organisms will be less sensitive to stress. Consequently, climate warming is expected to favour smaller taxa from lower trophic levels and smaller individuals within populations. To test these hypotheses, we surveyed zooplankton communities in 20 boreal lakes in Killarney Provincial Park, Canada during 2005 (an anomalously warm summer) and 2006 (a normal summer). Higher trophic levels had larger responses to warm temperatures supporting the stress–size hypothesis; however, rather than imposing negative effects, higher density and biomass were observed under warmer temperatures. As a result, larger taxa from higher trophic levels were disproportionately favoured with warming, precluding an expected shift towards smaller species. Proportionately greater increases in metabolic rates of larger organisms or altered biotic interactions (e.g. predation and competition) are possible explanations for shifts in biomass distribution. Warmer temperatures also favoured smaller individuals of the two most common species, in agreement with the stress–size hypothesis. Despite this, these populations had higher biomass in the warm summer. Therefore, reduced adult survivorship may have triggered these species to invest in reproduction over growth. Hence, warmer epilimnions, higher zooplankton biomass and smaller individuals within zooplankton populations may function as sensitive indicators of climate warming in boreal lakes.  相似文献   

14.
Wetlands in general and mires in particular belong to the most important terrestrial carbon stocks globally. Mires (i.e. bogs, transition bogs and fens) are assumed to be especially vulnerable to climate change because they depend on specific, namely cool and humid, climatic conditions. In this paper, we use distribution data of the nine mire types to be found in Austria and habitat distribution models for four IPCC scenarios to evaluate climate change induced risks for mire ecosystems within the 21st century. We found that climatic factors substantially contribute to explain the current distribution of all nine Austrian mire ecosystem types. Summer temperature proved to be the most important predictor for the majority of mire ecosystems. Precipitation—mostly spring and summer precipitation sums—was influential for some mire ecosystem types which depend partly or entirely on ground water supply (e.g. fens). We found severe climate change induced risks for all mire ecosystems, with rain-fed bog ecosystems being most threatened. Differences between scenarios are moderate for the mid-21st century, but become more pronounced towards the end of the 21st century, with near total loss of climate space projected for some ecosystem types (bogs, quagmires) under severe climate change. Our results imply that even under minimum expected, i.e. inevitable climate change, climatic risks for mires in Austria will be considerable. Nevertheless, the pronounced differences in projected habitat loss between moderate and severe climate change scenarios indicate that limiting future warming will likely contribute to enhance long-term survival of mire ecosystems, and to reduce future greenhouse gas emissions from decomposing peat. Effectively stopping and reversing the deterioration of mire ecosystems caused by conventional threats can be regarded as a contribution to climate change mitigation. Because hydrologically intact mires are more resilient to climatic changes, this would also maintain the nature conservation value of mires, and help to reduce the severe climatic risks to which most Austrian mire ecosystems may be exposed in the 2nd half of the 21st century according to IPCC scenarios.  相似文献   

15.
Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta‐analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log‐response ratio = –0.091, 95% bootstrapped CI: –0.13, –0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (–11.8%) and marine (–10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model‐averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species’ relative abundances were contingent on local species composition. Synthesis A global research priority is to understand the consequences of climate change for biodiversity. A growing number of experimental studies have manipulated climatic drivers, in particular changes in temperature, in local communities. In the first quantitative meta‐analysis of community‐level studies across freshwater, marine and terrestrial experiments, species richness declined consistently with experimental warming. This effect was insensitive to warming intensity, duration, and multiple environmental and procedural covariates. However, evenness responses were weakly negative only in terrestrial systems and more variable across ecosystem types. Linear mixed model analyses revealed that the identity of local sites explained nearly 50% of variance in evenness effect sizes, compared to only 10% for richness. This result provides evidence that local species composition strongly constrains changes in relative species abundances in response to warming.  相似文献   

16.
Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems. Using a 17 year time series from an international bottom trawl survey, we investigated covariations of an entire demersal ecosystem (101 taxa) with the environment in the Celtic Sea. Our results showed that over the past two decades, biotic communities in the Celtic Sea were likely controlled more by environmental variables than fisheries, probably due to its long history of exploitation. At the scale of the entire zone, relations between taxa and the environment remained stable over the years, but at a local scale, in the center of the Celtic Sea, dynamics were probably driven by interannual variation in temperature. Fishing was an important factor structuring species assemblages at the beginning of the time series (2000) but decreased in importance after 2009. This was most likely caused by a change in spatial distribution of fishing effort, following a change in targeted taxa from nephrops to deeper water anglerfish that did not covary with fishing effort. Increasing bottom temperatures could induce additional changes in the coming years, notably in the cold‐water commercial species cod, hake, nephrops, and American plaice. We showed that analyzing covariation is an effective way to screen a large number of taxa and highlight those that may be most susceptible to future simultaneous increases in temperature and changes in exploitation pattern by fisheries. This information can be particularly relevant for ecosystem assessments.  相似文献   

17.
Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.  相似文献   

18.
We projected effects of mid‐21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (Omykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature‐dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid‐21st century, the effects of climate change are projected to be mixed. Fish in warm‐region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid‐21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year‐to‐year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams.  相似文献   

19.
Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small‐scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small‐scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming.  相似文献   

20.
As global warming has lengthened the active seasons of many species, we need a framework for predicting how advances in phenology shape the life history and the resulting fitness of organisms. Using an individual‐based model, we show how warming differently affects annual cycles of development, growth, reproduction and activity in a group of North American lizards. Populations in cold regions can grow and reproduce more when warming lengthens their active season. However, future warming of currently warm regions advances the reproductive season but reduces the survival of embryos and juveniles. Hence, stressful temperatures during summer can offset predicted gains from extended growth seasons and select for lizards that reproduce after the warm summer months. Understanding these cascading effects of climate change may be crucial to predict shifts in the life history and demography of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号