共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrastructural and biochemical changes produced by monensin on zona fasciculata cells of the rat adrenal cortex are described. In this study we used adrenal cells in culture, adrenal slices and the intact animal. Monensin (1 microM) was added to the culture medium containing the cells, and to the incubation medium containing the adrenal slices, and was injected intravenously to the intact animal (0.65 mg/kg body weight). The ultrastructural alterations were similar in the three experimental conditions, and consisted of Golgi complex disorganization with dilated cisternae or large smooth vesicles. Quantitative analysis showed a significant increase of the relative volume of the Golgi area. The biochemical study demonstrated a significant decrease of corticosterone concentrations in culture medium after monensin addition, and in adrenal glands from treated rats. These results showed that monensin alters the fine structure of adrenal cortex Golgi complex and inhibits corticosteroidogenesis, which supports the probable role of the Golgi complex in the regulation of steroidogenesis. 相似文献
2.
A variety of effects of A23187 have been reported as its actions on adrenocortical steroidogenesis. This diversity probably resulted because of differences in the protocol of applying the Ca++ ionophore. We continue to observe a dose-dependent potentiation by the ionophore on ACTH-stimulated corticosterone secretory activity of superfused rat adrenocortical slices. This effect was eliminated or reversed if the tissue was pretreated with A23187 for 30 min prior to secretagogue application. The quality of the ionophore effect also depends on the submaximal dose of ACTH employed. 相似文献
3.
Summary As an approach for a better understanding of the mode of action of rotenone on mammalian cells we have studied the proliferation properties, metabolism and basic cell composition of Ehrlich ascites tumour cells cultured in vitro in the presence of 2,5 µM rotenone and after removal of the inhibitor.Experiments on asynchronous cells showed a rapid cessation of cell division accompanied by increased glycolytic rate, reduced oxygen consumption, moderate increase in DNA content and a fair increase in protein and RNA content of the cultures. DNA histograms obtained by flow-cytometry revealed an accumulation of cells in the G2 and M phase of the cell cycle. Electron micrographs taken after a 24 h treatment of cells illustrated the formation of giant mitochondria and fragmented nuclei.In order to elucidate the dual effect of rotenone — inhibition of mitochondrial energy metabolism and of mitotic processes — the influence on cells of rotenone at different stages of the cell cycle was tested using Ehrlich ascites tumour cells enriched in G1, S and G2 by centrifugal elutriation. DNA histograms and [3H]thymidine labelling index curves of cells from the different fractions cultured in the presence of 2,5 AM rotenone indicated that in addition to the observed accumulation in G2 and mitotic arrest of cells, the cell cycle progression is delayed in G1 phase. This may be explained by an effect of the inhibitor on the respiratory chain. S phase cells seemed to continue the cycle for several hours at a rate comparable to that of controls.Recultivation experiments on rotenone-treated asynchronous cells in inhibitor-free medium confirmed that some cells reinitiate DNA synthesis without preceeding cell division.Thus it must be concluded that cells at all stages of the cycle are affected by rotenone, but the impairment of cellular metabolism becomes manifest and lethal as soon as the acute block at mitosis is abolished and cells reenter the cycle.Abbreviations EAT cells
Ehrlich ascites tumour cells
- Hanks' solution
Hanks' balanced salt solution
- Hepes
4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid 相似文献
4.
Verapamil blocked catecholamine (CA) secretion evoked by acetylcholine (ACh), Ba2+ or Ca2+ in isolated perfused bovine adrenals. This inhibitory effect was irreversible and not modified by increasing the Ca2+ concentration of the perfusion fluid. Tetracaine also inhibited CA secretion, although no additive effect was found when both verapamil and tetracaine were present simultaneously in the perfusion medium. It is concluded that verapamil and tetracaine inhibit CA secretion presumably at the same site, but verapamil effect cannot be reverted by excess of calcium ions. 相似文献
5.
6.
7.
Congenital defects of adrenal steroidogenesis comprises a group of autosomally recessive disorders, which are usually caused by inactivating mutations in single enzymes involved in adrenal steroid biosynthesis. Each of the defects causes different biochemical consequences and clinical features. A different degree of enzyme dysfunction is responsible for a wide range of phenotypic expression even in the same disorder. The basis for the diagnosis of inborn errors of steroidogenesis are often refined methods for steroid determination. Because these defects may result in life-threatening conditions and, if not treated, lead to serious complications, its is essential to consider their presence in a differential diagnosis of various symptoms. Deficiency of 21-hydroxylase, the most common of these disorders, has been recently extensively reviewed. Therefore, this paper discusses the etiopathogenesis, clinical manifestation, biochemical abnormalities and management of other less frequent defects of adrenal steroidogenesis. 相似文献
8.
D A Ontjes 《Life sciences》1980,26(24):2023-2035
The control of cortisol secretion by ACTH and of aldosterone secretion by angiotensin is exerted upon separate cell populations in the adrenal cortex. Cells of the zona faciculata and the zona glomerulosa, while sharing common steroidogenic pathways, are affected differently by hormones and drugs. Fasciculata cells demonstrate increased cAMP formation and cortisol output primarily in response to ACTH. ACTH receptors, when occupied by hormone, transmit an activating signal to membrane-bound adenylate cyclase by a mechanism that may require the translocation of Ca2+. Although the precise way in which increased intracellular cAMP leads to increased steroidogenesis is unknown, protein phosphorylation and new protein synthesis are probably involved. Glomerulosa cells also respond to ACTH, but are uniquely responsive to physiological concentrations of angiotensin II and K+. The responsiveness of these cells to angiotensin may be governed by alterations in receptor number. Whether occupied angiotensin receptors activate steroidogenesis via cAMP is uncertain, but alterations in Ca2+ distribution within the cell may again be involved. Dopamine probably exerts a tonic inhibitory effect on glomerulosa cell function. Competitive inhibitory analogs for both ACTH and angiotensin II are available, but thus far all inhibitors have retained weak agonist properties. Because the regulatory processes for both cortisol and aldosterone are complex, a wide variety of drugs can affect rates of steroidogenesis . 相似文献
9.
The effect of calcium concentration on ACTH stimulation of steroidogenesis in mouse adrenal tumor cells 总被引:1,自引:0,他引:1
Calcium is required for ACTH stimulated steroidogenesis in adrenal tumor cells in tissue culture. In the absence of calcium, the dose of ACTH required to induce half maximum steroidogenesis was increased 30 fold. In contrast to intact adrenal glands or isolated adrenal cells, high doses of ACTH (50 mU/ml) maximally stimulated steroidogenesis in the absence of calcium. Growth for up to six days in medium with low calcium did not affect basal or ACTH induced steroidogenesis. The addition of calcium to cells incubated with ACTH produced a maximum steroidogenic response in 15 minutes. In contrast to intact adrenal glands, calcium is not required for adenosine-3′,5′-cyclic monophosphate (cyclic AMP) stimulated steroidogenesis in adrenal tumor cells. These experiments support the concept that calcium is important at the level of ACTH-membrane receptor site interaction or activation of adenyl cyclase in adrenal tumor cells. 相似文献
10.
11.
The effects of cyproterone acetate (CA) on steroidogenesis in isolated guinea-pig adrenal cells have been investigated by measuring the production of cortisol, its immediate precursors (11-deoxycortisol and 17-hydroxyprogesterone), and adrenal androgens (delta 4-androstenedione and dehydroepiandrosterone). Used at a dose of 2 micrograms/ml, CA provoked a sharp drop in the production of cortisol, aldosterone and 11-deoxycortisol. By contrast, 17-hydroxyprogesterone, delta 4-androstenedione and dehydroepiandrosterone were increased, which suggests that 21-hydroxylase activity is inhibited. With concentrations above 2 micrograms/ml CA, it would seem to be the 3-beta-ol-dehydrogenase-delta 4,5-isomerase complex that is affected, since dehydroepiandrosterone exhibited a sudden increase, whereas 17-hydroxyprogesterone and delta 4-androstenedione showed a relative decrease. The enzymatic system or systems involved therefore appear to be linked to the concentration of CA used but, whatever the case, the drop in cortisol production is accompanied by a decrease in aldosterone and an increase in adrenal androgen levels. 相似文献
12.
13.
The effect of monensin on the secretion of thyroglobulin was studied in open follicles isolated from pig thyroid tissue; in this system, thyroglobulin is secreted into the incubation medium. When monensin was present during a 4-h chase incubation after pulse-labelling with 3H-leucine, the secretion of labelled thyroglobulin was reduced by about 85%; in electron-microscopic autoradiographs of rat thyroid lobes labelled and chase-incubated under similar conditions the relative number of grains over follicle lumina was strongly reduced when monensin was present during the chase. These observations are in agreement with the consensus that monensin arrests transport of secretory proteins in the Golgi complex. In other experiments, pulse-labelled follicles were chase-incubated for 1.5 h whereby labelled thyroglobulin was transported from the RER to exocytic vesicles. Monensin present during a subsequent chase of 0.5 h caused only a moderate decrease of labelled thyroglobulin secretion. TSH present during the second chase-stimulated secretion in both control and monensin-exposed follicles. TSH also caused a drastic reduction of exocytic vesicles in rat thyroid lobes, and the number of vesicles remaining in the cells was the same in controls and lobes exposed to the ionophore. The observations are interpreted to show that monensin does not inhibit the basal or TSH-stimulated transport of thyroglobulin from the site of monensin-induced arrest in the Golgi complex to the apical cell surface or the exocytosis of thyroglobulin. 相似文献
14.
M M Magalh?es M C Magalh?es M L Gomes C Hipólito-Reis T A Serra 《European journal of cell biology》1987,43(2):247-252
The ultrastructural and biochemical alterations produced by an hypocholesterolemic drug, 17 alpha-ethinyl estradiol, on the rat adrenal cortex were studied. Male rats aged two months and with approximately 200 g in weight were injected subcutaneously with 10 mg/kg/day of ethinyl estradiol during 9 days; rats injected with 1 ml propylene glycol were used as controls. The animals were sacrificed on the 10th day, and the adrenals from some of them were processed for electron microscopy. The adrenals from the remaining rats were used for measurements of the glands cholesterol and corticosterone, which were also measured in the blood. In estradiol-treated rats the zona fasciculata cells exhibited numerous microvilli, increase in the size of mitochondria and decrease in the number of lipid droplets. The quantitative analysis showed a significant increase of the volumetric density of mitochondria and microvilli and a significant decrease of the lipid droplets in the treated rats, when compared with normal ones. In treated rats, the concentration of cholesterol and corticosterone in the gland and blood were significantly decreased. These data show that hypocholesterolemia produced by estradiol has a remarkable effect on adrenal steroidogenesis, depletes the pool of adrenal cholesteryl esters, and evidences the role of plasma cholesterol in the corticosteroidogenesis. 相似文献
15.
16.
Antibody-dependent cell-mediated immune cytolysis of herpes simplex virus-infected target cells involves two separate events, recognition and adhesion of the effector K cells to the antibody-coated target cells, and the final killing step. In the present study the killing event is shown to be dependent on an intact secretory mechanism in the K cells. Treatment of K cells with the carboxylic ionophore monensin, which blocks secretion, completely abolishes the K-cell-mediated killing, but the adhesion of the effector cells to the antibody-coated target cells is not affected by monensin. The similarity between the killing events mediated by K and NK cells is discussed. 相似文献
17.
Spironolactone and eplerenone are widely used as mineralocorticoid antagonists. Spironolactone has several nonspecific actions including inhibition of androgen receptor and steroid hormone biosynthesis. While studies have shown that eplerenone does not exhibit nonspecific actions on androgen receptor, its effects on steroid hormone production have not been reported. Herein, the effects of eplerenone (0.1-30 microM) and spironolactone (0.1-30 microM) on steroid production were examined in human adrenocortical H295R cells. Spironolactone inhibited basal production of cortisol (91%) and aldosterone (53%). Treatment of H295R cells with angiotensin II (Ang II) for 24 h increased aldosterone production by 11-fold. Spironolactone inhibited Ang II stimulation of aldosterone production by 80%. Addition of pregnenolone increased aldosterone (9-fold) and cortisol (3-fold) production. Spironolactone inhibited pregnenolone metabolism to aldosterone (67%) and cortisol (74%). The inhibitory effects of spironolactone occurred at concentrations far higher than those needed to block mineralocorticoid receptor, suggesting an action directly on the enzymes involved in steroid production. In contrast, eplerenone did not inhibit basal, Ang II, forskolin, pregnenolone-stimulated cortisol, or aldosterone production. Together, these data demonstrate that opposed to spironolactone, pharmacologic concentrations of eplerenone do not inhibit adrenal cell aldosterone or cortisol production. 相似文献
18.
Alpha-, beta- and gamma-melanocyte stimulating hormones (MSHs) are peptides derived from the ACTH precursor, pro-opiomelanocortin. All three peptides have been highly conserved throughout evolution but their exact biological function in mammals is still largely obscure. In recent years, there has been a surge of interest in alpha-MSH and its role in the regulation of feeding. Gamma-MSH by contrast has been shown to be involved in the regulation of adrenal steroidogenesis and also has effects on the cardiovascular and renal systems. This review will provide an overview of the role that gamma-MSH peptides play in the regulation of adrenal steroidogenesis. 相似文献
19.
20.
1. The initial rate of uptake of glycine by the tumour cells was measured as a function of the Na(+) and K(+) concentrations in the solution in which the cells were suspended. When [Gly] was 1mm or 12mm, the rate in the absence of Na(+) was independent of [K(+)] and about 3% or 10% respectively of the rate when [Na(+)] was 150m-equiv./l. 2. The Na(+)-dependent glycine entry rate, v, at a given value of [Na(+)] was successively lowered when [K(+)] was increased from 8 to 47 to 96m-equiv./l. A kinetic analysis indicated that K(+) competitively inhibited the action of Na(+). The results were in fair agreement with previous determinations of the kinetic parameters. 3. The presence of 2mm-sodium cyanide and 10mm-2-deoxyglucose lowered the cellular ATP content to less than 3% of the value in the respiring cells. Although v was then about 50% smaller, the relative effects of K(+) and Na(+) on the system were similar to those observed during respiration. 4. A theoretical analysis indicated that the variation of v with [K(+)] is not a reliable guide to the extent to which the K(+) gradient between the cells and their environment may contribute to the net transport of glycine. 相似文献