首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigating links between nervous system function and behavior requires monitoring neuronal activity at a range of spatial and temporal scales. Here, we summarize recent progress in applying two distinct but complementary approaches to the study of network dynamics in the neocortex. Mesoscopic calcium imaging allows simultaneous monitoring of activity across most of the cortex at moderate spatiotemporal resolution. Electrophysiological recordings provide extremely high temporal resolution of neural signals at multiple targeted locations. A number of recent studies have used these tools to reveal novel patterns of activity across distributed cortical subnetworks. This growing body of work strongly supports the hypothesis that the dynamic coordination of spatially distinct regions is a fundamental aspect of cortical function that supports cognition and behavior.  相似文献   

2.
Previous studies support the notion that sensorimotor learning involves multiple processes. We investigated the neuronal basis of these processes by recording single-unit activity in motor cortex of non-human primates (Macaca fascicularis), during adaptation to force-field perturbations. Perturbed trials (reaching to one direction) were practiced along with unperturbed trials (to other directions). The number of perturbed trials relative to the unperturbed ones was either low or high, in two separate practice schedules. Unsurprisingly, practice under high-rate resulted in faster learning with more pronounced generalization, as compared to the low-rate practice. However, generalization and retention of behavioral and neuronal effects following practice in high-rate were less stable; namely, the faster learning was forgotten faster. We examined two subgroups of cells and showed that, during learning, the changes in firing-rate in one subgroup depended on the number of practiced trials, but not on time. In contrast, changes in the second subgroup depended on time and practice; the changes in firing-rate, following the same number of perturbed trials, were larger under high-rate than low-rate learning. After learning, the neuronal changes gradually decayed. In the first subgroup, the decay pace did not depend on the practice rate, whereas in the second subgroup, the decay pace was greater following high-rate practice. This group shows neuronal representation that mirrors the behavioral performance, evolving faster but also decaying faster at learning under high-rate, as compared to low-rate. The results suggest that the stability of a new learned skill and its neuronal representation are affected by the acquisition schedule.  相似文献   

3.
Horizontal integration and cortical dynamics.   总被引:17,自引:0,他引:17  
C D Gilbert 《Neuron》1992,9(1):1-13
We have discussed several results that lead to a view that cells in the visual system are endowed with dynamic properties, influenced by context, expectation, and long-term modifications of the cortical network. These observations will be important for understanding how neuronal ensembles produce a system that perceives, remembers, and adapts to injury. The advantage to being able to observe changes at early stages in a sensory pathway is that one may be able to understand the way in which neuronal ensembles encode and represent images at the level of their receptive field properties, of cortical topographies, and of the patterns of connections between cells participating in a network.  相似文献   

4.
Sensorimotor integration is a field rich in theory backed by a large body of psychophysical evidence. Relating the underlying neural circuitry to these theories has, however, been more challenging. With a wide array of complex behaviors coordinated by their small brains, insects provide powerful model systems to study key features of sensorimotor integration at a mechanistic level. Insect neural circuits perform both hard-wired and learned sensorimotor transformations. They modulate their neural processing based on both internal variables, such as the animal's behavioral state, and external ones, such as the time of day. Here we present some studies using insect model systems that have produced insights, at the level of individual neurons, about sensorimotor integration and the various ways in which it can be modified by context.  相似文献   

5.
More than 50 years have passed since the first recording of neuronal responses to an odor stimulus from the primary olfactory brain area, the main olfactory bulb. During this time very little progress has been achieved in understanding neuronal dynamics in the olfactory bulb in awake behaving animals, which is very different from that in anesthetized preparations. In this paper we formulate a new framework containing the main reasons for studying olfactory neuronal dynamics in awake animals and review advances in the field within this new framework.  相似文献   

6.
7.
8.
9.
Activity of neurons if foveal striate and prestriate cortex of trained rhesus monkeys was recorded with metal microelectrodes. While animals fixated a small spot at a given fixation distance (38 or 57 cm), bright or dark bars moving across a frontoparallel plane were presented at different depths in a range of +/- 10 cm about the fixation distance. Almost all cells showed binocular interaction. Neurons with balanced ocularity (approximately equal monocular responses) usually facilitated each other and were tuned to depth around the plane of fixation often with inhibitory flanks nearer and further. Neurons with unbalanced ocularity either inhibited each other or had asymmetric depth sensitivity profiles, i.e. activation by stimuli in front and suppression by stimuli behind the fixation plane (near cells) or vice versa (far cells). Thus striate and prestriate cortex of the monkey contains four subsets of binocular cells which may contribute to depth perception.  相似文献   

10.
Population dynamics across a mortality gradient at an ecological margin are investigated using a novel modeling approach that allows direct comparison of stochastic spatially explicit simulation results with deterministic mean field models. The results show that demographic stochasticity has a large effect at population margins such that density profiles fall off more sharply than predicted by mean field models. Substantial spatial structure emerges at the margin, and spatial correlations (measured parallel to the margin) exhibit a sharp maximum in the tail of the density profile, indicating that spatial substructuring is greatest at an intermediate point across the ecological gradient. Such substructuring may have a substantial impact on Allee effects and evolutionary processes in marginal populations.  相似文献   

11.
Measuring the activity of neuronal populations with calcium imaging can capture emergent functional properties of neuronal circuits with single cell resolution. However, the motion of freely behaving animals, together with the intermittent detectability of calcium sensors, can hinder automatic monitoring of neuronal activity and their subsequent functional characterization. We report the development and open-source implementation of a multi-step cellular tracking algorithm (Elastic Motion Correction and Concatenation or EMC2) that compensates for the intermittent disappearance of moving neurons by integrating local deformation information from detectable neurons. We demonstrate the accuracy and versatility of our algorithm using calcium imaging data from two-photon volumetric microscopy in visual cortex of awake mice, and from confocal microscopy in behaving Hydra, which experiences major body deformation during its contractions. We quantify the performance of our algorithm using ground truth manual tracking of neurons, along with synthetic time-lapse sequences, covering a wide range of particle motions and detectability parameters. As a demonstration of the utility of the algorithm, we monitor for several days calcium activity of the same neurons in layer 2/3 of mouse visual cortex in vivo, finding significant turnover within the active neurons across days, with only few neurons that remained active across days. Also, combining automatic tracking of single neuron activity with statistical clustering, we characterize and map neuronal ensembles in behaving Hydra, finding three major non-overlapping ensembles of neurons (CB, RP1 and RP2) whose activity correlates with contractions and elongations. Our results show that the EMC2 algorithm can be used as a robust and versatile platform for neuronal tracking in behaving animals.  相似文献   

12.
13.
Two-photon scanning microscopy has advanced our understanding of neural signaling in non-mammalian species and mammals. Various developments are needed to perform two-photon scanning microscopy over prolonged periods in non-human primates performing a behavioral task. In striate cortex in two macaque monkeys, cortical neurons were transfected with a genetically encoded fluorescent calcium sensor, memTNXL, using AAV1 as a viral vector. By constructing an extremely rigid and stable apparatus holding both the two-photon scanning microscope and the monkey's head, single neurons were imaged at high magnification for prolonged periods with minimal motion artifacts for up to ten months. Structural images of single neurons were obtained at high magnification. Changes in calcium during visual stimulation were measured as the monkeys performed a fixation task. Overall, functional responses and orientation tuning curves were obtained in 18.8% of the 234 labeled and imaged neurons. This demonstrated that the two-photon scanning microscopy can be successfully obtained in behaving primates.  相似文献   

14.

Background  

Widespread cortical atrophy in Amyotrophic Lateral Sclerosis (ALS) has been described in neuropathological studies. The presence of cortical atrophy in conventional and scientific neuroimaging has been a matter of debate. In studies using computertomography, positron emission tomography, proton magnetic resonance spectroscopy and conventional T2-weighted and proton-weighted images, results have been variable. Recent morphometric studies by magnetic resonance imaging have produced conflicting results regarding the extent of grey and white matter involvement in ALS patients.  相似文献   

15.
16.
Sensitive period for sensorimotor integration during vocal motor learning   总被引:2,自引:0,他引:2  
Sensory experience during sensitive periods in development may direct the organization of neural substrates, thereby permanently influencing subsequent adult behavior. We report a sensitive period during the imitative motor learning phase of sensorimotor integration in birdsong development. By temporarily and reversibly blocking efference to the vocal muscles, we disrupted vocal motor practice during selected stages of song development. Motor disruption during prolonged periods early in development, which allows recovery of vocal control prior to the onset of adult song, has no effect on adult song production. However, song disruption late in development, during the emergence of adult song, results in permanent motor defects in adult song production. These results reveal a decreased ability to compensate for interference with motor function when disturbances occur during the terminal stage of vocal motor development. Temporary disruption of syringeal motor control in adults does not produce permanent changes in song production. Permanent vocal aberrations in juveniles are evident exclusively in learned song elements rather than nonlearned calls, suggesting that the sensitive period is associated with motor learning.  相似文献   

17.
18.
OP Gross  EN Pugh  ME Burns 《Biophysical journal》2012,102(8):1775-1784
Signaling of single photons in rod photoreceptors decreases the concentration of the second messenger, cyclic GMP (cGMP), causing closure of cGMP-sensitive channels located in the plasma membrane. Whether the spatiotemporal profiles of the fall in cGMP are narrow and deep, or broad and shallow, has important consequences for the amplification and the fidelity of signaling. The factors that determine the cGMP profiles include the diffusion coefficient for cGMP, the spontaneous rate of cGMP hydrolysis, and the rate of cGMP synthesis, which is powerfully regulated by calcium feedback mechanisms. Here, using suction electrodes to record light-dependent changes in cGMP-activated current in living mouse rods lacking calcium feedback, we have determined the rate constant of spontaneous cGMP hydrolysis and the longitudinal cGMP diffusion coefficient. These measurements result in a fully constrained spatiotemporal model of phototransduction, which we used to determine the effect of feedback to cGMP synthesis in spatially constricting the fall of cGMP during the single-photon response of normal rods. We find that the spatiotemporal cGMP profiles during the single-photon response are optimized for maximal amplification and preservation of signal linearity, effectively operating within an axial signaling domain of ~2 μm.  相似文献   

19.
The spatiotemporal dynamics of triglyceride (TG) storage in unilocular adipocytes are not well understood. Here we applied ex vivo technology to study trafficking and metabolism of fluorescent fatty acids in adipose tissue explants. Live imaging revealed multiple cytoplasmic nodules surrounding the large central lipid droplet (cLD) of unilocular adipocytes. Each cytoplasmic nodule harbors a series of closely associated cellular organelles, including micro–lipid droplets (mLDs), mitochondria, and the endoplasmic reticulum. Exogenously added free fatty acids are rapidly adsorbed by mLDs and concurrently get esterified to TG. This process is greatly accelerated by insulin. mLDs transfer their content to the cLD, serving as intermediates that mediate packaging of newly synthesized TG in the large interior of a unilocular adipocyte. This study reveals novel cell biological features that may contribute to the mechanism of adipocyte hypertrophy.  相似文献   

20.
Viral hepatitis A is still common in Italy, especially in Southern regions. In this study, a metapopulation model for hepatitis A virus (HAV) transmission is proposed and analyzed. Analytical results on the asymptotic and transient behaviors of the system are carried out. Based on the available Italian movement data, a national spatial contact matrix at the regional level, which could be used for new studies on the transmission dynamics of other infectious diseases, is derived for modeling fluxes of individuals. Despite the small number of fitted parameters, model simulations are in good agreement with the observed average HAV incidence in all regions. Our results suggest that the mass vaccination program introduced in one Italian region only (Puglia, the one with the highest endemicity level) could have played a role in the decline of HAV incidence in the country as a whole. The only notable exception is represented by Campania, a Southern region showing a high endemicity level, which is not substantially affected by HAV dynamics in Puglia. Finally, our results highlight that the continuation of the vaccination campaign in Puglia would have a relevant impact in decreasing long-term HAV prevalence, especially in Southern Italy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号