首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Occult hepatitis C viral infection (OHCI) is a newly reported pathological entity associated with increased risk of developing hepatocellular carcinoma and lymphoproliferative disorders. Although hepatocytes are the primary sites of viral replication, hepatitis C virus is potentially lymphotropic, invading and propagating in cells of the immune system. Lymphocytes, the extrahepatic viral reservoirs, are differentially implicated in the occult and the active forms of the disease. This study aimed to elucidate the implications of mitochondrial oxidative stress on the immune pathophysiological mechanisms of OHCI. We herein report that OHCI induces mitochondrial oxidative stress, leading to DNA double-strand breaks and elicitation of a phosphoinositol 3-kinase-mediated cellular response in peripheral blood lymphocytes. Compared to controls, OHCI subjects showed higher accumulation of pATM, pATR, γH2AX, and p-p53, along with active recruitment of repair proteins (Mre11, Rad50, and Nbs1) and altered mitochondrial DNA content. Increased mitochondrial membrane depolarization and circulating nucleosome levels along with chromatid-type aberrations and decreased T-cell proliferative index observed in the OHCI group further indicated that this damage might lead to Bax-triggered mitochondria-mediated cellular apoptosis. Together our results provide the mechanistic underpinnings of mitochondrial dysfunction in OHCI, a previously unknown paradigm, for explaining the immune pathogenesis in a redox-dependent manner.  相似文献   

2.
Fatty acids induced an increase in reactive oxygen species (ROS) and enhanced NF-kappaB activation in L6 myotubes differentiated in culture. Palmitate proved more effective than oleate in eliciting these effects. The induction of uncoupling protein-3 (UCP3) at levels similar to those occurring in vivo, attained through the use of an adenoviral vector, led to a reduction of mitochondrial membrane potential in L6 myotubes. However, the capacity of palmitate to increase ROS was not reduced but, quite the opposite, it was moderately enhanced due to the presence of UCP3. The presence of UCP3 in mitochondria did not modify the expression of genes encoding ROS-related enzymes, either in basal conditions or in the presence of palmitate. However, in the presence of UCP3, UCP2 mRNA expression was down-regulated in response to palmitate. We conclude that UCP3 does not act as a protective agent against palmitate-dependent induction of ROS production in differentiated skeletal muscle cells.  相似文献   

3.
Wheat (Triticum aestivum L.) is one of the major grain crops, and heat stress adversely affects wheat production in many regions of the world. Previously, we found a heat-responsive gene named Lipid Transfer Protein 3 (TaLTP3) in wheat. TaLTP3 was deduced to be regulated by cold, ABA, MeJA, Auxin and oxidative stress according to cis-acting motifs in its promoter sequences. In this study, we show that TaLTP3 is responsive to prolonged water deficit, salt or ABA treatment in wheat seedlings. Also, TaLTP3 accumulation was observed after the plant suffered from heat stress both at the seedling and the grain-filling stages. TaLTP3 protein was localized in the cell membrane and cytoplasm of tobacco epidermal cells. Overexpression of TaLTP3 in yeast imparted tolerance to heat stress compared to cells expressing the vector alone. Most importantly, transgenic Arabidopsis plants engineered to overexpress TaLTP3 showed higher thermotolerance than control plants at the seedling stage. Further investigation indicated that transgenic lines decreased H2O2 accumulation and membrane injury under heat stress. Taken together, our results demonstrate that TaLTP3 confers heat stress tolerance possibly through reactive oxygen species (ROS) scavenging.  相似文献   

4.
Uncoupling protein 3 (UCP3) is suggested to protect mitochondria against aging and lipid-induced damage, possibly via modulation of reactive oxygen species (ROS) production. Here we show that mice overexpressing UCP3 (UCP3Tg) have a blunted age-induced increase in ROS production, assessed by electron spin resonance spectroscopy, but only after addition of 4-hydroxynonenal (4-HNE). Mitochondrial function, assessed by respirometry, on glycolytic substrate was lower in UCP3Tg mice compared to wild types, whereas this tended to be higher on fatty acids. State 4o respiration was higher in UCP3Tg animals. To conclude, UCP3 overexpression leads to increased state 4o respiration and, in presence of 4-HNE, blunts the age-induced increase in ROS production.  相似文献   

5.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single ∼33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 °C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 °C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

6.
Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.  相似文献   

7.
In vitro, uncoupling protein 3 (UCP3)-mediated uncoupling requires cofactors [e.g., superoxides, coenzyme Q (CoQ) and fatty acids (FA)] or their derivatives, but it is not yet clear whether or how such activators interact with each other under given physiological or pathophysiological conditions. Since triiodothyronine (T3) stimulates lipid metabolism, UCP3 expression and mitochondrial uncoupling, we examined its effects on some biochemical pathways that may underlie UCP3-mediated uncoupling. T3-treated rats (Hyper) showed increased mitochondrial lipid-oxidation rates, increased expression and activity of enzymes involved in lipid handling and increased mitochondrial superoxide production and CoQ levels. Despite the higher mitochondrial superoxide production in Hyper, euthyroid and hyperthyroid mitochondria showed no differences in proton-conductance when FA were chelated by bovine serum albumin. However, mitochondria from Hyper showed a palmitoyl-carnitine-induced and GDP-inhibited increased proton-conductance in the presence of carboxyatractylate. We suggest that T3 stimulates the UCP3 activity in vivo by affecting the complex network of biochemical pathways underlying the UCP3 activation.  相似文献   

8.
Depressed energy metabolism and oxidative stress are common features in many pathological situations in the brain, including stroke. In order to investigate astrocytic responses to such stress, we induced metabolic depression in cultured rat astrocytes. Iodoacetate (IA), an inhibitor of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used and resulted in a rapid inhibition of GAPDH activity. After 1h of GAPDH inhibition the ATP levels started to decrease and were completely abolished at 4h. In parallel, the activity of reactive oxygen species (ROS) was significantly increased, followed by extensive cell death involving flipping of phosphatidylserine and translocation of apoptosis-inducing factor, but not caspase-3 activation. When IA was combined with azide, a respiratory chain complex IV inhibitor, the ATP levels decreased immediately. Interestingly, with azide present, the ROS activity remained low and the astrocytes remained viable even at very low ATP levels. Addition of exogenous ROS-scavengers prevented the IA-induced ROS activity, the ATP levels were maintained and cell death was prevented. Similar protection could be obtained when astrocytes, prior to addition of IA, were incubated with substances known to activate the nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated endogenous antioxidant system. When IA was washed out, after a relatively moderate ATP depression, massive cell death occurred. This was efficiently prevented by addition of azide or ROS scavengers during the IA treatment or by pre-activation of the Nrf2 system. Our results demonstrate that astrocytes in culture can endure and recover from glycolytic inhibition if the ROS activity remained at a low level and suggest that oxidative stress can be an important component for astrocytic cell death following metabolic stress.  相似文献   

9.
Chronic arsenic exposure causes oxidative stress and mitochondrial dysfunction in the liver and brain. The ideal treatment would be to chelate arsenic and prevent oxidative stress. meso-2,3-Dimercaptosuccinic acid (DMSA) is used to chelate arsenic but its hydrophilicity makes it membrane-impermeative. Conversely, quercetin (QC) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, and it is not possible to solubilize these two compounds in a single nontoxic solvent. Nanocapsules have emerged as a potent drug delivery system and make it feasible to incorporate both hydrophilic and lipophilic compounds. Nanoencapsulated formulations with QC and DMSA either alone or coencapsulated in polylactide-co-glycolide [N(QC+DMSA)] were synthesized to explore their therapeutic application in a rat model of chronic arsenic toxicity. These treatments were compared to administration of quercetin or DMSA alone using conventional delivery methods. Both nanoencapsulated quercetin and nanoencapsulated DMSA were more effective at decreasing oxidative injury in liver or brain compared to conventional delivery methods, but coencapsulation of quercetin and DMSA into nanoparticles had a marked synergistic effect, decreasing liver and brain arsenic levels from 9.5 and 4.8μg/g to 2.2 and 1.5μg/g, respectively. Likewise, administration of coencapsulated quercetin and DMSA virtually normalized changes in mitochondrial function, formation of reactive oxygen species, and liver injury. We conclude that coencapsulation of quercetin and DMSA may provide a more effective therapeutic strategy in the management of arsenic toxicity and also presents a novel way of combining hydrophilic and hydrophobic drugs into a single delivery system.  相似文献   

10.
The purpose of this study was to investigate the changes in the gene expression of Mitofusion (Mfn) 1 and 2 and Fission 1 (Fis1) and mitochondrial energy metabolism in response to altered energy demand during prolonged exercise in rat skeletal muscle. Male Sprague–Dawley rats were subjected to an acute bout of treadmill running at various durations and killed immediately or during recovery. Mfn1/2 and Fis1 mRNA and protein contents, reactive oxygen species (ROS) generation, state 3 and state 4 respiration rates, trans-innermembrane potential and ATP synthase activity were measured in isolated muscle mitochondria. We found that (1) Mfn1/2 mRNA contents were progressively decreased during 150 min of exercise, along with decreased Mfn 1 protein levels. Fis1 mRNA and protein contents showed significant increases after 120–150 min of exercise. These changes persisted through the recovery period up to 24 h. (2) Mitochondrial ROS generation and state 4 respiration showed progressive increases up to 120 min, but dropped at 150 min of exercise. (3) State 3 respiration rate and respiratory control index were unchanged initially but decreased at 150 and 120 min of exercise, respectively, whereas ATP synthase activity was elevated at 45 min and returned to resting level thereafter. Our data suggested that the gene expression of mitochondrial fusion and fission proteins in skeletal muscle can respond rapidly to increased metabolic demand during prolonged exercise, which could significantly affect the efficiency of oxidative phosphorylation.  相似文献   

11.
12.
MicroRNAs (miRNAs) are small non-coding RNAs that control protein expression through translational inhibition or mRNA degradation. MiRNAs have been implicated in diverse biological processes such as development, proliferation, apoptosis and differentiation. Upon treatment with nerve growth factor (NGF), rat pheochromocytoma PC12 cells elicit neurite outgrowth and differentiate into neuron-like cells. NGF plays a critical role not only in neuronal differentiation but also in protection against apoptosis. In an attempt to identify NGF-regulated miRNAs in PC12 cells, we performed miRNA microarray analysis using total RNA harvested from cells treated with NGF. In response to NGF treatment, expression of 8 and 12 miRNAs were up- and down-regulated, respectively. Quantitative RT-PCR analysis of 11 out of 20 miRNAs verified increased expression of miR-181a, miR-221 and miR-326, and decreased expression of miR-106b, miR-126, miR-139-3p, miR-143, miR-210 and miR-532-3p after NGF treatment, among which miR-221 was drastically up-regulated. Functional annotation analysis of potential target genes of 7 out of 9 miRNAs excluding the passenger strands (*) revealed that NGF may regulate expression of various genes by controlling miRNA expression, including those whose functions and processes are known to be related to NGF. Overexpression of miR-221 induced neuronal differentiation of PC12 cells in the absence of NGF treatment, and also enhanced neuronal differentiation caused by low-dose NGF. Furthermore, miR-221 potentiated formation of neurite network, which was associated with increased expression of synapsin I, a marker for synapse formation. More importantly, knockdown of miR-221 expression by antagomir attenuated NGF-mediated neuronal differentiation. Finally, miR-221 decreased expression of Foxo3a and Apaf-1, both of which are known to be involved in apoptosis in PC12 cells. Our results suggest that miR-221 plays a critical role in neuronal differentiation as well as protection against apoptosis in PC12 cells.  相似文献   

13.
Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ΔsigCDE contains the stress responsive SigB as the only functional group 2 σ factor. The ?sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ?sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ?sigCDE than in the control strain. These results indicate that ?sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ?sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ?sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ?sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ?sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required.  相似文献   

14.
Oxidative stress remodels Ca2+ signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca2+/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca2+ signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca2+ current (ICa,L) in rat cardiomyocytes. A 5-min exposure of 1 mM H2O2 induced an increase in ICa,L, and this increase was sustained for ~ 1 h. The CaMKII inhibitor KN-93 fully reversed H2O2-induced LTF of ICa,L, indicating that sustained CaMKII activity underlies this oxidative stress-induced memory. Simultaneous inhibition of oxidation and autophosphorylation of CaMKII prevented the maintenance of LTF, suggesting that both mechanisms contribute to sustained CaMKII activity. We further found that sarcoplasmic reticulum Ca2+ release and mitochondrial ROS generation have critical roles in sustaining CaMKII activity via autophosphorylation- and oxidation-dependent mechanisms. Finally, we show that long-term remodeling of the cardiac action potential is induced by H2O2 via CaMKII. In conclusion, CaMKII and mitochondria confer oxidative stress-induced pathological cellular memory that leads to cardiac arrhythmia.  相似文献   

15.
Alternative oxidase (AOX) plays a pivotal role in cyanide-resistance respiration in the mitochondria of plants, fungi and some protists. Here we show that AOX from thermogenic skunk cabbage successfully conferred cyanide resistance to human cells. In galactose medium, HeLa cells with mitochondria-targeted AOX proteins were found to have significantly less reactive oxygen species production in response to antimycin-A exposure, a specific inhibitor of respiratory complex III. These results suggest that skunk cabbage AOX can be used to create an alternative respiration pathway, which might be important for therapy against various mitochondrial diseases.  相似文献   

16.
17.
Runko AP  Griswold AJ  Min KT 《FEBS letters》2008,582(5):715-719
In Friedreich's ataxia, reduction of the mitochondria protein frataxin results in the accumulation of iron and reactive oxygen species, which leads to oxidative damage, neurodegeneration and a diminished lifespan. Recent studies propose that frataxin might play a role in the antioxidative process. Here we show that overexpression of Drosophila frataxin in the mitochondria of female transgenic animals increases antioxidant capability, resistance to oxidative stress insults, and longevity. This suggests that Drosophila frataxin may function to protect the mitochondria from oxidative stresses and the ensuing cellular damage.  相似文献   

18.
Pollen is an important trigger of allergic diseases. Recent studies have shown that ragweed pollen NAD(P)H oxidase generates reactive oxygen species (ROS) and plays a prominent role in the pathogenesis of allergies in mouse models. Here, we demonstrated that allergenic pollen grains showed NAD(P)H oxidase activity that differed in intensity and localization according to the plant families. The activity occurred at the surface or in the cytoplasm in pollen of grasses, birch, and ragweed; in subpollen particles released from ragweed pollen; and at the inner surface or in the cytoplasm but not on the outer wall, which was sloughed off after the rupture, of pollen of Japanese cedar and Japanese cypress. The activity was mostly concentrated within insoluble fractions, suggesting that it facilitates the exposure of tissues to ROS generated by this enzyme. The extent of exposure to pollen-generated ROS could differ among the plant families.  相似文献   

19.
Deregulated activation of protein tyrosine kinases, such as the epidermal growth factor receptor (EGFR) and Abl, is associated with human cancers including non-small cell lung cancer (NSCLC) and chronic myeloid leukemia (CML). Although inhibitors of such activated kinases have proved to be of therapeutic benefit in individuals with NSCLC or CML, some patients manifest intrinsic or acquired resistance to these drugs. We now show that, whereas blockade of either the extracellular signal-regulated kinase (ERK) pathway or the phosphatidylinositol 3-kinase (PI3K)-Akt pathway alone induced only a low level of cell death, it markedly sensitized NSCLC or CML cells to the induction of apoptosis by histone deacetylase (HDAC) inhibitors. Such enhanced cell death induced by the respective drug combinations was apparent even in NSCLC or CML cells exhibiting resistance to EGFR or Abl tyrosine kinase inhibitors, respectively. Co-administration of a cytostatic signaling pathway inhibitor may contribute to the development of safer anticancer strategies by lowering the required dose of cytotoxic HDAC inhibitors for a variety of cancers.  相似文献   

20.
The ability of a 43 kDa stichocyte protein from Trichinella spiralis (Tsp43) to interfere with mammalian skeletal muscle gene expression was investigated. A MYC-tagged Tsp43 construct was expressed as a recombinant protein in C2C12 myoblasts. Transfection with low amounts of expression plasmid was required for successful expression of the protein. This construct had apparent toxic effects on transfected myoblasts and ectopic green fluorescent protein expression was suppressed in myoblasts co-transfected with the Tsp43 construct. These effects may result from similarities of Tsp43 to DNase II. Use of the general DNase inhibitor aurintricarboxylic acid (ATA) enhanced expression of MYC-Tsp43 in transfected muscle cells. Myoblasts transfected with Tsp43 did not fuse well when cultured under differentiation conditions without ATA. In contrast, transfected myoblasts transiently cultured with ATA underwent fusion and differentiation. Under short-term differentiation conditions without ATA, unfused myoblasts nevertheless expressed both MYC-Tsp43 and myosin heavy chain. Collectively, the results support that Tsp43 has a role in the T. spiralis life cycle that is distinct from repressing muscle gene expression during the muscle phase of infection. While the function of Tsp43 as a DNase is under debate, the effects of ATA on transfected muscle cells were consistent with this possibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号