首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
从河南HIV-1流行区感染者中克隆HIV-1 B亚型gag基因,通过序列比对获得其一致性共有序列,对该共有序列按照哺乳动物优势密码子的使用原则进行优化,以Western blot方法比较优化前后gag基因体外表达量.发现对gag基因进行密码子优化可显著提高其表达水平.将优化后的mod.gag基因插入重组腺病毒载体,构建了重组病毒rAdV-mod.gag.在BALB/c小鼠体内分别以108PFIJ及108PFU rAdV-mod.gag疫苗单独免疫两次均可产生较高水平的gag特异性细胞免疫反应.由此得出结论,对gag基因的密码子优化是成功的;表达优化后gag基因的重组腺病毒疫苗,可以在小鼠体内诱导较强的gag基因特异性CTL应答.  相似文献   

2.
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) are an important parameter of host defenses that limit viral replication after infection. Induction of effective CTL against conserved viral proteins such as Gag may be essential to the development of a safe and effective HIV type 1 (HIV-1) vaccine. DNA vaccination represents a novel strategy for inducing potent CD8(+) CTL responses in vivo. However, expression of HIV-1 structural proteins by DNA vectors has been hampered by a stringent requirement for coexpression with other viral components, such as Rev and RRE. Furthermore, even with Rev and RRE present, the level of expression of HIV-1 Gag, Pol, or Env is very low in murine cells. These problems have limited our ability to address the key issue of how to generate effective CTL responses to Gag in a mouse model. To overcome this problem, we compared several novel DNA expression vectors for HIV-1 Gag protein expression in primate and mouse cells and for generating immune responses in mice after DNA vaccination. A DNA vector containing wild type HIV-1 gag coding sequences did not induce detectable Gag expression in any of the cells tested. Attempts to increase nuclear export of Gag expression RNA by adding the constitutive transport element yielded only a moderate increase in Gag expression in monkey-derived COS cells and an even lower increase in Gag expression in HeLa cells or several mouse cell lines. In contrast, silent-site mutations in the HIV-1 gag coding sequences significantly increased Gag expression levels in all cells tested. Furthermore, this construct induced both Gag-specific antibody and CTL responses in mice after DNA vaccination. Using this construct, we achieved stable expression of HIV-1 Gag in the mouse cell line p815, which can now be used as a target cell for measuring HIV-1 Gag-specific CTL responses in immunized mice. The DNA vectors described in this study should make it possible to systematically evaluate the approaches for maximizing the induction of CTL responses against HIV-1 Gag in mouse and other animal systems.  相似文献   

3.
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1( )-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.  相似文献   

4.
A safe and effective HIV vaccine is required to significantly reduce the number of people becoming infected with HIV each year. In this study wild type Mycobacterium bovis BCG Pasteur and an attenuated pantothenate auxotroph strain (BCGΔpanCD) that is safe in SCID mice, have been compared as vaccine vectors for HIV-1 subtype C Gag. Genetically stable vaccines BCG[pHS400] (BCG-Gag) and BCGΔpanCD[pHS400] (BCGpan-Gag) were generated using the Pasteur strain of BCG, and a panothenate auxotroph of Pasteur respectively. Stability was achieved by the use of a codon optimised gag gene and deletion of the hsp60-lysA promoter-gene cassette from the episomal vector pCB119. In this vector expression of gag is driven by the mtrA promoter and the Gag protein is fused to the Mycobacterium tuberculosis 19 kDa signal sequence. Both BCG-Gag and BCGpan-Gag primed the immune system of BALB/c mice for a boost with a recombinant modified vaccinia virus Ankara expressing Gag (MVA-Gag). After the boost high frequencies of predominantly Gag-specific CD8(+) T cells were detected when BCGpan-Gag was the prime in contrast to induction of predominantly Gag-specific CD4(+) T cells when priming with BCG-Gag. The differing Gag-specific T-cell phenotype elicited by the prime-boost regimens may be related to the reduced inflammation observed with the pantothenate auxotroph strain compared to the parent strain. These features make BCGpan-Gag a more desirable HIV vaccine candidate than BCG-Gag. Although no Gag-specific cells could be detected after vaccination of BALB/c mice with either recombinant BCG vaccine alone, BCGpan-Gag protected mice against a surrogate vaccinia virus challenge.  相似文献   

5.
We have analyzed the influence of codon usage modifications on the expression levels and immunogenicity of DNA vaccines, encoding the human immunodeficiency virus type 1 (HIV-1) group-specific antigen (Gag). In the presence of Rev, an expression vector containing the wild-type (wt) gag gene flanked by essential cis-acting sites such as the 5'-untranslated region and 3'-Rev response element supported substantial Gag protein expression and secretion in human H1299 and monkey COS-7 cells. However, only weak Gag production was observed from the murine muscle cell line C2C12. In contrast, optimization of the Gag coding sequence to that of highly expressed mammalian genes (syngag) resulted in an obvious increase in the G+C content and a Rev-independent expression and secretion of Gag in all tested mammalian cell lines, including murine C2C12 muscle cells. Mice immunized intramuscularly with the syngag plasmid showed Th1-driven humoral and cellular responses that were substantially higher than those obtained after injection of the Rev-dependent wild-type (wt) gag vector system. In contrast, intradermal immunization of both wt gag and syngag vector systems with the particle gun induced a Th2-biased antibody response and no cytotoxic T lymphocytes. Deletion analysis demonstrated that the CpG motifs generated within syngag by codon optimization do not contribute significantly to the high immunogenicity of the syngag plasmid. Moreover, low doses of coadministered stimulatory phosphorothioate oligodeoxynucleotides (ODNs) had only a weak effect on antibody production, whereas at higher doses immunostimulatory and nonstimulatory ODNs showed a dose-dependent suppression of humoral responses. These results suggest that increased Gag expression, rather than modulation of CpG-driven vector immunity, is responsible for the enhanced immunogenicity of the syngag DNA vaccine.  相似文献   

6.
7.
Ag processing is a critical step in defining the repertoire of epitope-specific immune responses. In the present study, HIV-1 p55Gag Ag was synthesized as a DNA plasmid with either lysosomal-associated membrane protein-1 (LAMP/gag) or human dendritic cell-LAMP (DC-LAMP/gag) and used to immunize mice. Analysis of the cellular trafficking of these two chimeras demonstrated that both molecules colocalized with MHC class II molecules but differed in their overall trafficking to endosomal/lysosomal compartments. Following DNA immunization, both chimeras elicited potent Gag-specific T and B cell immune responses in mice but differ markedly in their IL-4 and IgG1/IgG2a responses. The DC-LAMP chimera induced a stronger Th type 1 response. ELISPOT analysis of T cell responses to 122 individual peptides encompassing the entire p55gag sequence (15-aa peptides overlapping by 11 residues) showed that DNA immunization with native gag, LAMP/gag, or DC-LAMP/gag induced responses to identical immunodominant CD4+ and CD8+ peptides. However, LAMP/gag and DC-LAMP/gag plasmids also elicited significant responses to 23 additional cryptic epitopes that were not recognized after immunization with native gag DNA. The three plasmids induced T cell responses to a total of 39 distinct peptide sequences, 13 of which were induced by all three DNA constructs. Individually, DC-LAMP/gag elicited the most diverse response, with a specific T cell response against 35 peptides. In addition, immunization with LAMP/gag and DC-LAMP/gag chimeras also promoted Ab secretion to an increased number of epitopes. These data indicate that LAMP-1 and DC-LAMP Ag chimeras follow different trafficking pathways, induce distinct modulatory immune responses, and are able to present cryptic epitopes.  相似文献   

8.
Virus-specific cytotoxic T lymphocytes (CTL) with high levels of functional avidity have been associated with viral clearance in hepatitis C virus infection and with enhanced antiviral protective immunity in animal models. However, the role of functional avidity as a determinant of HIV-specific CTL efficacy remains to be assessed. Here we measured the functional avidities of HIV-specific CTL responses targeting 20 different, optimally defined CTL epitopes restricted by 13 different HLA class I alleles in a cohort comprising 44 HIV controllers and 68 HIV noncontrollers. Responses restricted by HLA-B alleles and responses targeting epitopes located in HIV Gag exhibited significantly higher functional avidities than responses restricted by HLA-A or HLA-C molecules (P = 0.0003) or responses targeting epitopes outside Gag (P < 0.0001). The functional avidities of Gag-specific and HLA-B-restricted responses were higher in HIV controllers than in noncontrollers (P = 0.014 and P = 0.018) and were not restored in HIV noncontrollers initiating antiretroviral therapy. T-cell receptor (TCR) analyses revealed narrower TCR repertoires in higher-avidity CTL populations, which were dominated by public TCR sequences in HIV controllers. Together, these data link the presence of high-avidity Gag-specific and HLA-B-restricted CTL responses with viral suppression in vivo and provide new insights into the immune parameters that mediate spontaneous control of HIV infection.  相似文献   

9.
10.
Adenovirus vector-based vaccine is a promising approach to protect HIV infection. However, a recent phase IIb clinical trial using the vector did not show its protective efficacy against HIV infection. To improve the vaccine, we explored the transgene protein expression and its immunogenicity using optimized codon usage, promoters and adaptors. We compared protein expression and immunogenicity of adenovirus vector vaccines carrying native or codon usage-optimized HIV-1 clade C gag and env genes expression cassettes driven by different promoters (CMV, CMVi, and CA promoters) and adapters (IRES and F2A). The adenovirus vector vaccine containing optimized gag gene produced higher Gag protein expression and induced higher immune responses than the vector containing native gag gene in mice. Furthermore, CA promoter generated higher transgene expression and elicited higher immune responses than other two popularly used promoters (CMV and CMVi). The second gene expression using F2A adaptor resulted in higher protein expression and immunity than that of using IRES and direct fusion protein. Taken together, the adenovirus vector containing the expression cassette with CA promoter, optimized HIV-1 clade C gene and an F2A adaptor produced the best protein expression and elicited the highest transgene-specific immune responses. This finding would be promising for vaccine design and gene therapy.  相似文献   

11.
Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendai virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1(+)-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens. Foundation item: National 863 project (2003AA219070)  相似文献   

12.
Nearly all human immunodeficiency virus (HIV) infections are acquired mucosally, and the gut-associated lymphoid tissues are important sites for early virus replication. Thus, vaccine strategies designed to prime virus-specific cytotoxic T lymphocyte (CTL) responses that home to mucosal compartments may be particularly effective at preventing or containing HIV infection. The Salmonella type III secretion system has been shown to be an effective approach for stimulating mucosal CTL responses in mice. We therefore tested DeltaphoP-phoQ attenuated strains of Salmonella enterica serovar Typhimurium and S. enterica serovar Typhi expressing fragments of the simian immunodeficiency virus (SIV) Gag protein fused to the type III-secreted SopE protein for the ability to prime virus-specific CTL responses in rhesus macaques. Mamu-A*01(+) macaques were inoculated with three oral doses of recombinant Salmonella, followed by a peripheral boost with modified vaccinia virus Ankara expressing SIV Gag (MVA Gag). Transient low-level CTL responses to the Mamu-A*01 Gag(181-189) epitope were detected following each dose of SALMONELLA: After boosting with MVA Gag, strong Gag-specific CTL responses were consistently detected, and tetramer staining revealed the expansion of Gag(181-189)-specific CD8(+) T-cell responses in peripheral blood. A significant percentage of the Gag(181-189)-specific T-cell population in each animal also expressed the intestinal homing receptor alpha4beta7. Additionally, Gag(181-189)-specific CD8(+) T cells were detected in lymphocytes isolated from the colon. Yet, despite these responses, Salmonella-primed/MVA-boosted animals did not exhibit improved control of virus replication following a rectal challenge with SIVmac239. Nevertheless, this study demonstrates the potential of mucosal priming by the Salmonella type III secretion system to direct SIV-specific cellular immune responses to the gastrointestinal mucosa in a primate model.  相似文献   

13.
中国HIV-1流行毒株的DNA疫苗的初步研究   总被引:6,自引:3,他引:3  
为研制针对我国HIV-1流行毒株的艾滋病毒疫苗,构建了具有代表性的gag和gp120核酸疫苗,进行了初步的小鼠免疫实验。结果初步显示:(1)免疫Balb/C小鼠可以产生HIV-1特异性的体液和细胞免疫;(2)gag和gp120基因联合免疫可以同时诱发针对gag和gp120的细胞和体液免疫反应,而且效果比各自单独免疫要好;(3)B亚型gp120基因免疫可以诱发识别C亚型gp120抗原的CTL反应。本  相似文献   

14.
Qiu JT  Liu B  Tian C  Pavlakis GN  Yu XF 《Journal of virology》2000,74(13):5997-6005
In this study, we have investigated the influence of antigen targeting after DNA vaccination upon the induction of cellular immune responses against human immunodeficiency virus type 1 (HIV-1) Gag. In addition to the standard version of HIV-1 Gag, we constructed Gag expression vectors that encode a secreted (Sc-Gag) and a cytoplasmic (Cy-Gag) Gag molecule. Although all three HIV-1 Gag expression vectors induced detectable humoral and cellular immune responses, after intramuscular injection the DNA vector encoding the Sc-Gag generated the highest primary cytotoxic T-lymphocyte (CTL) and T-helper responses. Mice immunized with one of the HIV-1 Gag DNA vectors (but not with the control vector pcDNA3. 1) developed a protective immune response against infection with recombinant vaccinia virus expressing HIV-1 Gag, and this response persisted for 125 days. The magnitude of the protection correlated with the levels of Gag-specific ex vivo CTL activity and the number of CD8(+) T cells producing gamma interferon. The DNA vector encoding the Sc-Gag induced higher levels of protection and greater secondary CTL responses than did the DNA vector encoding Cy-Gag.  相似文献   

15.
Although DNA codon optimization is a standard molecular biology strategy to overcome poor gene expression, to date no public software exists to facilitate this process. Among the uses of codon optimization, human immunodeficiency virus (HIV) vaccine development represents one of the most difficult challenges. A key obstacle to an effective DNA-based vaccine is the low-level expression of HIV genes in mammalian cells, which is due primarily to the instability of HIV mRNAs resulting from AU-rich elements and rare codon usage. In this report we describe the development of a DNA optimization algorithm integrated with a PCR primer design program to redesign specific coding sequences for maximal gene expression. Using this algorithm combination, together with PCR-based gene assembly, we have successfully optimized gene sequences for simian immunodeficiency virus (SIV) strain mac239 structural antigenic proteins gag and env, resulting in high-level gene expression in eukaryotic cells. Our findings demonstrate that our user-friendly algorithm is a valuable tool for DNA-based HIV vaccine development. Moreover, it can be used to optimize any other genes of interest and is freely available online at http://www.vectorcore.pitt.edu/upgene.html.  相似文献   

16.
Although its potential for vaccine development is already known, the introduction of recombinant human immunodeficiency virus (HIV) genes to Mycobacterium bovis bacille Calmette-Guérin (BCG) has thus far elicited only limited responses. In order to improve the expression levels, we optimized the codon usage of the HIV type 1 (HIV-1) p24 antigen gene of gag (p24 gag) and established a codon-optimized recombinant BCG (rBCG)-p24 Gag which expressed a 40-fold-higher level of p24 Gag than did that of nonoptimized rBCG-p24 Gag. Inoculation of mice with the codon-optimized rBCG-p24 Gag elicited effective immunity, as evidenced by virus-specific lymphocyte proliferation, gamma interferon ELISPOT cell induction, and antibody production. In contrast, inoculation of animals with the nonoptimized rBCG-p24 Gag induced only low levels of immune responses. Furthermore, a dose as small as 0.01 mg of the codon-optimized rBCG per animal proved capable of eliciting immune responses, suggesting that even low doses of a codon-optimized rBCG-based vaccine could effectively elicit HIV-1-specific immune responses.  相似文献   

17.
18.
Alphavirus replicon particle-based vaccine vectors derived from Sindbis virus (SIN), Semliki Forest virus, and Venezuelan equine encephalitis virus (VEE) have been shown to induce robust antigen-specific cellular, humoral, and mucosal immune responses in many animal models of infectious disease and cancer. However, since little is known about the relative potencies among these different vectors, we compared the immunogenicity of replicon particle vectors derived from two very different parental alphaviruses, VEE and SIN, expressing a human immunodeficiency virus type 1 p55(Gag) antigen. Moreover, to explore the potential benefits of combining elements from different alphaviruses, we generated replicon particle chimeras of SIN and VEE. Two distinct strategies were used to produce particles with VEE-p55(gag) replicon RNA packaged within SIN envelope glycoproteins and SIN-p55(gag) replicon RNA within VEE envelope glycoproteins. Each replicon particle configuration induced Gag-specific CD8(+) T-cell responses in murine models when administered alone or after priming with DNA. However, Gag-specific responses varied dramatically, with the strongest responses to this particular antigen correlating with the VEE replicon RNA, irrespective of the source of envelope glycoproteins. Comparing the replicons with respect to heterologous gene expression levels and sensitivity to alpha/beta interferon in cultured cells indicated that each might contribute to potency differences. This work shows that combining desirable elements from VEE and SIN into a replicon particle chimera may be a valuable approach toward the goal of developing vaccine vectors with optimal in vivo potency, ease of production, and safety.  相似文献   

19.
Several genetic vaccines encoding antigen chimeras containing the lysosome-associated membrane protein (LAMP) translocon, transmembrane, and cytoplasmic domain sequences have elicited strong mouse antigen-specific immune responses. The increased immune response is attributed to trafficking of the antigen chimera to the major histocompatibility class II (MHC II) compartment where LAMP is colocalized with MHC II. In this report, we describe a new form of an HIV-1 p55gag DNA vaccine, with the gag sequence incorporated into the complete LAMP cDNA sequence. Gag encoded with the translocon, transmembrane and cytoplasmic lysosomal membrane targeting sequences of LAMP, without the luminal domain, was poorly expressed, did not traffic to lysosomes or MHC II compartments of transfected cells, and elicited a limited immune response from DNA immunized mice. In contrast, addition of the LAMP luminal domain sequence to the construct resulted in a high level of expression of the LAMP/Gag protein chimera in transfected cells that was further increased by including the inverted terminal repeat sequences of the adeno-associated virus to the plasmid vector. This LAMP/Gag chimera with the complete LAMP protein colocalized with endogenous MHC II of transfected cells and elicited strong cellular and humoral immune responses of immunized mice as compared with the response to DNA-encoding native Gag, with a 10-fold increase in CD4+ responses, a 4- to 5-fold increase in CD8+ T-cell responses, and antibody titers of >100,000. These results reveal novel roles of the LAMP luminal domain as a determinant of Gag protein expression, lysosomal trafficking, and possibly of the immune response to Gag.  相似文献   

20.
Myristoylation of the Pr65gag protein from Moloney murine leukemia virus has been shown to be essential for virus particle formation [Rein et al., Proc. Natl. Acad. Sci. USA 83 (1986) 7246-7250], and by analogy, myristoylation of the human immunodeficiency virus (HIV) Gag precursor could possibly play a similar role. We have investigated the expression and myristoylation of the complete HIV Gag precursor Pr55gag in yeast, the subcellular localization of that protein, and the contribution of the myristoyl-glycine residue to this localization. Immunogold labelling of myristoylated Pr55gage with antibodies directed against HIV Gag products was apparent in the vicinity of the plasma membrane. On the contrary, non-myristoylated derivatives of Pr55gag were only detected in relatively well-defined regions of the cytoplasm. These results show that targeting and accumulation of the HIV Gag precursor, Pr55gag, at the plasma membrane occurs in yeast in the absence of other viral components and requires the N-myristoyl-glycine residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号