首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enantiomers of various 1-(alpha-aminobenzyl)-2-naphthol and 1-(aminoalkyl)-2-naphthol analogs were separated on cellulose-tris-3,5-dimethylphenyl carbamate-based chiral stationary phases (Chiralcel OD-H and Chiralcel OD-RH), using n-hexane/2-propanol/diethylamine or phosphate buffer/organic modifier mobile phases. The 3,5-dimethylphenyl carbamoylated cellulose columns were effective in both normal and rev ersed-phase modes. The effects of the mobile phase composition, the pH, the buffer concentration, and the structures of the substituents on the 2-naphthol on the enantioseparations were studied. The absolute configuration and elution sequence were determined for 1-(1-amino-2-methylpropyl)-2-naphthol: the elution sequence was S < R.  相似文献   

2.
Shen B  Xu X  Chen J  Zhang X  Xu B 《Chirality》2006,18(9):757-761
Conditions for separation of enantiomers of a mandelic acid derivative, methyl 2-phenyl-2-(tetrahydropyranyloxy) acetate (the analyte) were studied. Because of the presence of two chiral carbons, the analyte consists of four stereoisomers stable at ambient temperature. Chiral HPLC of the analyte resulted in four peaks, using an (S,S)-Whelk-O1 column with the mobile phase consisting of hexane and the t-butyl methyl ether (TBME). It was found that TBME dramatically changed the retention of the isomers, though it produced the best enantioseparation on (S,S)-Whelk-O1. The amount of TBME in the mobile phase influenced the degree of retention shift; 5% (v/v) TBME gave a bigger shift than 8% (v/v) and 10% (v/v). 2-Propanol did not produce the same results. The chiral separation was also tried on cellulose tris (3, 5-dimethyl phenylcarbamate) (CDMPC), but only three peaks were seen, indicating some but not full enantiomer resolution.  相似文献   

3.
The HPLC enantiomer separation of a novel series of C(5)-chiral 1-acetyl-3-(4-hydroxy- and 2,4-dihydroxyphenyl)-5-phenyl-4,5-dihydro-(1H)-pyrazole derivatives, with inhibitory activity against monoamine oxidases (MAO) type A and B, was accomplished using polysaccharide-based chiral stationary phases (CSPs: Chiralpak AD, Chiralcel OD, and Chiralcel OJ). Pure alcohols, such as ethanol and 2-propanol, and typical normal-phase binary mixtures, such as n-hexane and alcohol modifier, were used as mobile phases. Single enantiomers of several analytes examined were isolated on a semipreparative scale, and their chiroptical properties were measured. The assignment of the absolute configuration was established for one compound by single-crystal X-ray diffraction method and for the other three by CD spectroscopy. The inhibitory activity against MAO of racemic samples and single enantiomers were evaluated in vitro.  相似文献   

4.
Chen Y  Liu XQ  Zhong J  Zhao X  Wang Y  Wang G 《Chirality》2006,18(10):799-802
The pharmacokinetics of ornidazole (ONZ) were investigated following i.v. administration of racemic mixture and individual enantiomers in beagle dogs. Plasma concentrations of ONZ enantiomers were analyzed by chiral high-performance liquid chromatography (HPLC) on a Chiralcel OB-H column with quantification by UV at 310 nm. Notably, the mean plasma levels of (-)-ONZ were higher in the elimination phase than those of (+)-ONZ. (-)-ONZ also exhibited greater t1/2, MRT, AUC(0-t) and smaller CL, than those of its antipode. The area under the plasma concentration-time curve (AUC(0-t)) of (-)-ONZ was about 1.2 times as high as that of (+)-ONZ. (+)-ONZ total body clearance (CL) was 1.4 times than its optical antipode. When given separately, there were significant differences in the values of AUC(0-infinity) and CL between ONZ enantiomers (P < 0.05), indicating that elimination of (+)-ONZ was more rapid than that of (-)-ONZ. No significant differences were found between the estimates of the pharmacokinetic parameters of (+)-ONZ or (-)-ONZ, obtained following administration as the individual and as a racemic mixture. This study demonstrates that the elimination of ONZ enantiomers is stereoselective and chiral inversion and enantiomer/enantiomer interaction do not occur when the enantiomers are given separately and as racemic mixture.  相似文献   

5.
This paper describes the enantiorecognition of (±)nicotine and (±)nornicotine by high-performance liquid chromatography using two derivatized cellulose chiral stationary phases (CSPs) operated in the normal phase mode. It was found that different substituents linked to the cellulose backbone significantly influence the chiral selectivity of the derivatized CSP. The results showed that, in general, the tris(4-methylbenzoyl) cellulose CSP (Chiralcel OJ) surpasses tris(3,5-dimethylphenyl carbamoyl) cellulose CSP (Chiralcel OD). On the former column, the resolution (±)nicotine and (±)nornicotine enantiomers depended largely on mobile phase compositions. For the separation of the nicotine enantiomers, the addition of trifluoroacetic acid to a 95:5 hexane/alcohol mobile phase greatly improved the enantioresolution, probably due to enhanced hydrogen bonding interactions between the protonated analytes and the CSP. For (±)nornicotine separation, a reduction in the concentration of alcohol in the mobile phase was more effective than the addition of trifluoroacetic acid. Possible solute-mobile phase-stationary phase interactions are discussed to explain how different additives in the mobile phase and different substituents on the cellulose glucose units of the CSPs affect the separation of both pairs of enantiomers. Chirality 10:364–369, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    6.
    Enantioseparation of the antidiarrheal drug, racecadotril, was investigated by liquid chromatography using polysaccharide‐type chiral stationary phases in polar organic mode. The enantiodiscrimininating properties of 4 different chiral columns (Chiralpak AD, Chiralcel OD, Chiralpak AS, Chiralcel OJ) with 5 different solvents (methanol, ethanol, 1‐propanol, 2‐propanol, and acetonitrile) at 5 different temperatures (5–40 °C) were investigated. Apart from Chiralpak AS column the other 3 columns showed significant enantioseparation capabilities. Among the tested mobile phases, alcohol type solvents were superior over acetonitrile, and significant differences in enantioselective performance of the selector were observed depending on the type of alcohol employed. Van't Hoff analysis was used for calculation of thermodynamic parameters which revealed that enantioseparation is mainly enthalpy controlled; however, enthropic control was also observed. Enantiopure standard was used to determine the enantiomer elution order, revealing chiral selector—and mobile‐phase dependent reversal of enantiomer elution order. Using the optimized method (Chiralcel OJ stationary phase, thermostated at 10 °C, 100% methanol, flow rate: 0.6 mL/min) baseline separation of racecadotril enantiomers (resolution = 3.00 ± 0.02) was achieved, with the R‐enantiomer eluting first. The method was validated according to the ICH guidelines, and its application was tested on capsule and granules containing the racemic mixture of the drug.  相似文献   

    7.
    A comparison of the enantiomeric resolution of (+/-)-threo-methylphenidate (MPH) (Ritalin) was achieved on different polysaccharide based chiral stationary phases. The mobile phase used was hexane-ethanol-methanol-trifluoroacetic acid (480:9.75:9.75:0.5, v/v/v/v). Benzoic acid and phenol were used as the mobile phase additives for the enantiomeric resolution of MPH on Chiralcel OB column only. The alpha values for the resolved enantiomers were 1.34, 1.29, 1.30, and 1.24 on Chiralpak AD, Chiralcel OD, Chiralcel OB (containing 0.2 mM benzoic acid in mobile phase), and Chiralcel OB (containing 0.2 mM phenol in mobile phase) columns, respectively. The R(s) values were 1.82, 1.53, 1.19, and 1.10 on Chiralpak AD, Chiralcel OD, Chiralcel OB (containing 0.2 mM benzoic acid in mobile phase), and Chiralcel OB (containing 0.2 mM phenol in mobile phase), respectively. The role of benzoic acid and phenol as mobile phase additives is discussed.  相似文献   

    8.
    A direct, isocratic, and simple reversed-phase HPLC method was described for the separation of enantiomers of the proton pump inhibitor, rac-pantoprazole (PAN) using cellulose-based chiral stationary phases (Chiralcel OD-R and Chiralcel OJ-R). Some structurally related chiral benzimidazole sulfoxides, rac-omeprazole (OME) and raclansoprazole (LAN), were also studied. Chiralcel OJ-R was successful in the resolution of enantiomers of rac-PAN and rac-OME, while Chiralcel OD-R was most suitable for resolving the enantiomers of rac-LAN. Highest enantioselectivity to rac-PAN and rac-OME was achieved on Chiralcel OJ-R by using acetonitrile as an organic modifier, whereas methanol afforded better resolution of rac-LAN on Chiralcel OD-R than acetonitrile. Increases in buffer concentration and column temperature decreased retention and did not improve the resolution of the enantiomers on both columns. Using a mixture of 50 mM sodium perchlorate solution and acetonitrile as a mobile phase at a flow rate of 0.5 ml/min, maximum separation factors of 1.26 and 1.13 were obtained for the enantiomers of rac-PAN and rac-OME using a Chiralcel OJ-R column, while maximum separation factor of 1.16 was obtained for the enantiomers of rac-LAN using a Chiralcel OD-R column. © 1995 Wiley-Liss, Inc.  相似文献   

    9.
    Liu W  Lin K  Gan J 《Chirality》2006,18(9):713-716
    Many of the organophosphorus pesticides (OPs) currently used are chiral and therefore consist of mixture of enantiomers. Despite the fact that the biological processes of chiral pesticides are enantioselective, the acute aquatic toxicity of chiral OPs with respect to enantioselectivity has so far received limited research. In this study, the enantiomeric separation and acute aquatic toxicity of trichloronate were investigated. Baseline enantioseparation of trichloronate was successfully achieved using high-performance liquid chromatography on a Chiralcel OJ column, with a mobile phase of n-hexane/n-heptane/ethanol (90/5/5, v/v/v) at the flow rate of 1.0 ml min(-1) and room temperature. The resolved enantiomers were characterized for their optical rotation and by gas chromatography coupled with mass spectrometry. Significant differences were found between the enantiomers in acute aquatic toxicity to Ceriodaphnia dubia and Daphnia magna. The (-)-trichloronate was 8-11 times more toxic to the test organisms than its (+)-form, while the racemate showed intermediate toxicity. These results suggest that assessment of the environmental safety of chiral OPs should take stereospecificity into consideration.  相似文献   

    10.
    Caccamese S  Manna L  Scivoli G 《Chirality》2003,15(8):661-667
    Naringin is the chief flavanone glycoside of grapefruit (Citrus paradisi). It is responsible for part of the bitter taste of the fruit and can cause the inhibition of some cytochrome P450s. The direct separation of (2R)- and (2S)-naringin in the albedo of grapefruits was obtained in normal phase HPLC mode using Chiralcel OD as chiral stationary phase and n-hexane/ethanol with 0.1% of TFA as mobile phase. Chiralpak AD was almost ineffective in the separation. This procedure was used to evaluate the stereochemistry at C-2 during maturation of the grapefruit. The CD curves of (2R)- and (2S)-naringin isolated by semipreparative chiral HPLC were determined and the elution order of the chromatographic peaks was related to the absolute C-2 configuration. Partial resolution of the C-2 diastereomers of narirutin was obtained on Chiralpak AD.  相似文献   

    11.
    A simple and innovative assay is described which allows the chiral separation of the four enantiomers of fluoxetine and norfluoxetine, with performance characteristics adequate for therapeutic drug monitoring. The assay requires liquid-liquid extraction into acetonitrile/n-hexane/isopropylic alcohol and re-extraction into phosphoric acid for clean-up. The acidic layer is injected onto the HPLC system after filtering. Separation of the analytes is achieved with a Chiralcel ODR column and a mobile phase consisting of potassium hexafluorophosphate/acetonitrile. Detection is made by ultraviolet absorbance at 227 nm. Standard curves are linear for each enantiomer (r(2)>/=0.992) over the range of 10-1000 ng/ml with a limit of quantification of 10 ng/ml for each enantiomer. Within-day and between-day CV% are 相似文献   

    12.
    A simple and rapid chiral high‐performance liquid chromatography (HPLC) method was developed and validated for bioanalysis of clopidogrel enantiomers on rat dried blood spots (DBS). Clopidogrel enantiomers were extracted from DBS using ethanol: methanol (80:20, v/v) and separated on a Chiralcel OJ‐H column containing cellulose tris (4‐methly benzoate) as a polysaccharide stationary phase using n‐hexane–ethanol‐diethylamine (70:30, 0.1 v/v) as a mobile phase at a flow rate of 1.0 mL/min. The detection was carried out at 220 nm using a photodiode array (PDA) detector while the elution order of the enantiomers was determined by a polarimeter connected to PDA in series. The effect of hematocrit on extraction of clopidogrel enantiomers from DBS was evaluated and no interference from endogenous substances was noticed. The overall accuracy of (R) and (S) enantiomers of clopidogrel from DBS were 91.6 and 89.2%, respectively. The calibration curves were linear over the concentration range of 1–500 µg/mL for both enantiomers. The results show that the method is specific, precise, and reproducible (intra‐ and interday precision relative standard deviations (RSDs) <10.0%). The stability of racemic clopidogrel was performed under all storage conditions and the results were found to be well within the acceptance limits. Chirality 26:102–107, 2014.© 2014 Wiley Periodicals, Inc.  相似文献   

    13.
    The poly(trans-1,2-cyclohexanediyl-bis acrylamide) (P-CAP) column has so far been primarily used with normal phase and polar organic mobile phase chromatography. Its use in supercritical fluid chromatography (SFC) was investigated via the analysis of 40 commercial and 100 proprietary compounds using a 12-min gradient with methanol as a modifier. Results were then compared against those obtained from the popular derivatized polysaccharide-based chiral stationary phases (CSPs) such as Chiralpak AD-H and Chiralpak AS-H as well as Chiralcel OD-H and Chiralcel OJ-H columns. P-CAP demonstrated separation of 25% of the 140 total compounds, while each of the derivatized polysaccharide-based CSPs separated at least 46%. A study that compared the loading of 1,1'-bi-2-naphthol with P-CAP and Chiralpak AS columns indicated a similar trend in resolution vs. amount injected, though AS appeared capable of allowing a greater loading of material. The P-CAP column was found to be beneficial in the separation of a complex mixture of enantiomers and achiral impurities, where the derivatized polysaccharide-based columns did not show as desirable of a separation. A key advantage of this type of chiral stationary phase is the fact that it is available in both enantiomeric forms, allowing manipulation of elution order of enantiomers, which is especially helpful for preparative applications. P-CAP also demonstrated that it could resolve an achiral impurity from the desired compound in a different mixture, while the same impurity co-eluted on the Chiralpak AD-H column. Overall, the synthetic polymer-based P-CAP showed less chiral discrimination power compared to the derivatized polysaccharide-based CSPs under the conditions explored in this study.  相似文献   

    14.
    The normal phase mode liquid chromatographic enantiomer separation capability of a quinine tert-butyl-carbamate-type chiral stationary phase (CSP) has been investigated for a set of polar [1,5-b]-quinazoline-1,5-dione derivatives. This class of chiral heterocycles is currently under development as potential alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and/or N-methyl-D-aspartic acid (NMDA) receptor antagonists. The effect of the nature and concentration of polar modifier, i.e., ethanol and isopropanol, in n-hexane-based mobile phases, as well as the substituent pattern of the phenyl ring attached to the quinazolone framework on retention factor, enantioselectivity, and resolution was investigated. The Soczewiński competitive adsorption model was used to describe the relationship between the retention and the binary mobile phase compositions. According to this model, linear plots of the logarithms of retention factor versus molar fractions of the polar modifiers were obtained over a wide concentration range (X(B) between 0.15 and 0.35). Addition of equimolar ethanol yields higher resolution than isopropanol, R(S) values ranging between 1.54 and 2.75, whereas the latter allows to achieve moderately increased enatioselectivity. The resolution was further improved by using a ternary mixture of n-hexane:methanol:isopropanol/85:5:10 (v/v). The most pronounced selectivity factor alpha and resolution R(S) values were obtained for the para-hydroxy substituted compound, indicating that chiral recognition is sensitive to steric and stereoelectronic factors. In the course of optimization, the temperature-dependence on the chiral separation was also investigated. It turned out that the enantiomer separation is predominantly enthalpically driven in normal phase mode.  相似文献   

    15.
    Michal Dou&#x;a 《Chirality》2019,31(3):202-210
    A sensitive chiral high performance liquid chromatography (HPLC) method for the determination of aliphatic primary amino alcohol isomers with o‐phthaldialdehyde/mercaptoethanol precolumn derivatization has been developed and validated. Seven chiral columns were tested in a reversed phase mode. Excellent enantioseparation with the resolution more than 2.0 was achieved on Chiralcel OJ‐3R. The effect of various chromatographic conditions including column temperature, acetonitrile content in the mobile phase, buffer pH, buffer concentration, and buffer type in the mobile phase on the retention and the selectivity was investigated. The final mobile phase consisted of binary mixture of 20mM ammonium formate solution with acetonitrile (75:25; v/v). The analyses were performed at mobile phase flow rate of 1.0 mL/min and the column temperature of 40°C. The fluorescence detection was performed at excitation wavelength of 345 nm and emission wavelength of 450 nm. The developed method was fully validated in terms of linearity, sensitivity, accuracy, precision, intermediate precision, and selectivity according to International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines using internal normalization procedure. The proposed chiral method was proved to be highly sensitive, simple, and rapid and was successfully applied to the determination of D‐Valinol content in commercially available samples of L‐Valinol.  相似文献   

    16.
    The behavior of mefloquine, halofantrine, enpiroline, quinine, quinidine, chloroquine and primaquine is studied by subcritical fluid chromatography on a (S)-naphthylurea column (250 mm × 4.6 mm ID) with a subcritical mobile phase composed of carbon dioxide, methanol and triethylamine (flow rate of 3 ml/min). Except for primaquine and chloroquine, each enantiomer was separated at a temperature between 40 and 60°C, and at a pressure below 15 MPa. A 98/2, v/v CO2/methanol 0.1% triethylamine mixture allowed the separation of halofantrine enantiomers while the enantiomers of the more polar metabolite (N-desbutylhalofantrine) were separated with a 80–20 v/v mixture as used for mefloquine, enpiroline, quinine and quinidine. The influence of temperature, pressure and of the nature of the mobile phase is discussed. © 1993 Wiley-Liss, Inc.  相似文献   

    17.
    This study demonstrates the increased versatility of the Chiralcel OJ-H stationary phase when using various alcohol/acetonitrile mobile phases. This chiral stationary phase has traditionally been employed in the normal phase mode and more recently with neat alcohols as eluents. Selected isomeric human mineralocorticoid receptor (hMR) antagonist pharmaceutical candidates and synthetic intermediates were separated using the Chiralcel OJ-H HPLC column with novel polar cosolvent eluent systems. The capacity factors, resolution, and selectivity of the chiral separations were assessed while varying the alcohol/acetonitrile composition and alcohol identity. The mixed polar eluents provide separations that are nearly always superior to both the traditional hexane-rich and single-alcohol "polar organic" eluents for the compounds tested in this article.  相似文献   

    18.
    《Chirality》2017,29(3-4):147-154
    Separations of six dihydropyridine enantiomers on three commercially available cellulose‐based chiral stationary phases (Chiralcel OD‐RH, Chiralpak IB, and Chiralpak IC) were evaluated with high‐performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol‐modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n‐hexane/isopropanol (85:15, v /v) for nimodipine (R  = 5.80) and cinildilpine (R  = 5.65); n‐hexane/isopropanol (92:8, v /v) for nicardipine (R  = 1.76) and nisoldipine (R  = 1.92); and n‐hexane/isopropanol/ethanol (97:2:1, v /v/v) for felodipine (R  = 1.84) and lercanidipine (R  = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column.  相似文献   

    19.
    We describe the preparation of racemic N,N-dimethyl-3-(naphthalen-2-yl)-butan-1-amines, potential sigma1 ligands, and their resolution via chiral HPLC. In order to obtain enantiopure compounds, direct chromatographic methods of separation using chiral stationary phases were investigated. Different methods suitable for both analytical and semipreparative purposes are proposed. The best resolutions were achieved using cellulose tris (3,5-dimethylphenyl carbamate) (Chiralcel OD and OD-H) and amylose tris (3,5-dimethylphenyl carbamate) (Chiralpak AD). On the basis of the preliminary chromatographic results, the resolution of compound 1 was transferred onto a Chiralcel OD semipreparative column. The enantiomers were obtained in high enantiomeric excess. The configurational assignment was performed by circular dichroism. Computational analysis was used to explore the enantioselective recognition process of compound 1 with the Chiralcel OD stationary phase.  相似文献   

    20.
    A novel, sensitive and rapid CL method coupled with high‐performance liquid chromatography separation for the determination of carbamazepine is described. The method was based on the fact that carbamazepine could significantly enhance the chemiluminescence of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium(II) in the presence of acid. The chromatographic separation was performed on a Kromasil® (Sigma‐Aldrich) TM RP‐C18 column (id: 150 mm × 4.6 mm, particle size: 5 µm, pore size: 100 Å) with a mobile phase consisting of methanol–water‐glacial acetic acid (70:29:1, v/v/v) at a flowrate of 1.0 mL/min, the total analysis time was within 650 s. Under optimal conditions, CL intensity was linear for carbamazepine in the range 2.0 × 10?8 ~ 4.0 × 10?5 g/mL, with a detection limit of 6.0 × 10?9 g/mL (S/N = 3) and the relative standard detection was 2.5% for 2.0 × 10?6 g/mL (n = 11). This method was successfully applied to the analysis of carbamazepine in human urine and serum samples. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号