首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Moderate cell growth occurred after a long lag phase of about 100 hr when oxygen-sensitive hydrogen bacterium N34 was cultivated chemoautotrophically under 40% O2. A decrease in cell growth or viable count was not observed during the lag phase. These cells grown under 40 % O2 were oxygen-resistant because when used as inocula for fresh 40 % O2-culture, the growth lag period was less than 10 hr. Nine oxygen-sensitive colonies developed from a single oxygen-sensitive cell respectively. When these colonies were inoculated into 40% O2-culture, they showed an almost equal lag period and growth rate. These results suggest that cell growth in 40% O2-culture inoculated with oxygen-sensitive strain N34 occurred not by selection of oxygen-resistant variants which might preexist but by adaptation of very oxygen-sensitive cells to high oxygen tension. Oxygen-resistance thus developed was maintained after successive subcultures under 10% O2 for more than one year.  相似文献   

3.
This report investigates the requirement for CO2 for colony formation by Bifidobacterium species in both anoxic and oxic environments. All tested Bifidobacterium species exhibited difficulty in developing colonies in an atmosphere of 100% N2 but developed well when 1% CO2 was present. In the presence of CO2, the oxygen tolerance of the tested species was not improved. In the absence of CO2, only B. boum, a microaerophilic species, could develop colonies under an N2-based 5% O2 atmosphere, indicating that while CO2 is not an essential factor for colony development, both CO2 and O2 have stimulatory effects on B. boum colony development.  相似文献   

4.
Recently, several colony PCR methods have been developed to simplify DNA isolation procedure and facilitate PCR-based colony screening efforts in microalgae. A main drawback of current protocols is that cell collection, disruption, and genomic DNA extraction are required preceding the PCR step, making the colony PCR process laborious and costly. In the present study, we have developed a novel procedure that eliminates any steps of DNA extraction and allows the colony screening to be performed in a single PCR tube: algal cells (as low as 5,000) from agar plates or liquid cultures were directly transferred into a PCR tube containing 2× PCR buffer and boiled for 5–10 min depending on different algal strains, followed by addition of other PCR components (dNTPs, primers, and polymerase) and then subjected to conventional PCR reaction. The procedure documented here worked well not only for the model alga Chlamydomonas reinhardtii, but also for the thick-walled oleaginous strains such as Chlorella, Haematococcus, Nannochloropsis, and Scenedesmus with its efficacy independent on amplicon sizes and primer pairs. In addition, screening of Chlorella zofingiensis transformants was achieved using this method. Collectively, our single-tube colony PCR is a much simpler and more cost-effective procedure as compared to those previously reported and has broad applications including gene cloning, strain determination, and high-throughput screening of algae colonies and transformants for biomass and biofuel production.  相似文献   

5.
Dissociated stage 21–28 chick embryo limb bud cells showed an increasing ability to produce cartilage colonies in vitro with in vivo maturation. In addition dissociated stage 21–28 chick embryo limb bud cells exposed to cartilage conditioned medium continuously or only for 48 hr prior to subculture showed an enhanced (as much as 15-fold) ability to form differentiated cartilage colonies. By this criterion, cells were more responsive to conditioned medium prior to stage 25. Conditioned medium from fibroblast cultures caused an inhibition of cartilage colony formation, suggesting that the effect is cell-type specific. Besides increasing cartilage colony formation by enhanced cell survival, the incorporation of S35O4 into isolated glycosaminoglycans is also stimulated when limb bud cells are exposed to cartilage conditioned medium. The results support a model for cell differentiation which involves the enhancement of a particular differentiated capacity by a diffusible cell-type-specific macromolecule.  相似文献   

6.
7.
Panikov  N. S.  Belova  S. E.  Dorofeev  A. G. 《Microbiology》2002,71(1):50-56
The universally recognized kinetic model of colony growth, introduced by Pirt, predicts a linear increase of colony size. The linearity follows from the assumption that the colony expands through the growth of only such cells that are located immediately behind the moving colony front, in the so-called peripheral zone of constant width and density. In this work, Pirt's model was tested on two bacteria—Alcaligenes sp. and Pseudomonas fluorescens—having markedly distinct cultural properties and grown on an agarized medium with pyruvate. The colony size dynamics was followed for different densities of the inoculum, ranging from a single cell to a microdroplet of bacterial suspension (105–106 cells), and for different depths of the agar layer, determining the amount of available substrate. A linear growth mode was observed only with P. fluorescens and only in the case of growth from a microdroplet. When originating from a single cell, colonies of both organisms displayed nonlinear growth with a distinct peak of K r (the rate of colony radius increase) occurring after 2–3 days of growth. The growth of P. fluorescens colonies showed virtually no dependence on the depth of the agarized medium, whereas the rate of colony size increase of Alcaligenes sp. turned out to be directly related to the medium layer thickness. The departure from linearity is consistently explained by a new kinetic scheme stipulating a possible contribution to the colony growth not only of peripheral cells but also (much more distinct in Alcaligenes) of cells at the colony center. The colony growth dynamics is determined not only by the concentration of the limiting substrate but also by the amount of autoinhibitor, the synthesis of which is governed by the age of cells. The distinctions of growth from a single cell and microdroplet could also originate as a result of dissociation into the R- and S-forms and competition between the corresponding subpopulations for oxygen and the common substrate.  相似文献   

8.
We examined two aspects of the social control of nest climate in bumblebee colonies: which parameters of nest climate bumblebees actively down-regulate by fanning and the dynamics of the colony response as colony size increased. Colonies of Bombus terrestris were exposed to an increase in carbon dioxide, temperature or relative humidity. We performed 70 temperature trials (six colonies), 58 CO2 trials (four colonies) and four humidity trials (two colonies). An increase in CO2 concentration and temperature elicited a fanning response whereas an increase in relative humidity did not. This is the first report of fanning in bumblebee colonies to control respiratory gases. The number of fanning bees increased with stimulus intensity. The colony response to a CO2 concentration of 3.2% was comparable to the colony response to a temperature of 30°C. A marked fanning response occurred at 1.6% CO2, a concentration never exceeded in a large field nest during a pilot measurement of 10 days. We investigated the colony response over a wide range of colony sizes (between 10 and 119 workers). The proportion of the total workforce invested by colonies in nest ventilation did not change significantly; thus, the number of fanning workers increased with colony size. Furthermore, as colony size increased, the dynamics of the colony response changed: colonies responded faster to perturbations of their environment when they were large (60 or more individuals) than when they were small. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

9.
Colonies of the stream-inhabiting cyanobacterium Nostoc parmelioides Kützing often contain a single endosymbiotic dipteran larva Cricotopus nostocicola (Wirth), which induces a morphological change from small, spherical colonies to larger, ear-shaped colonies. At a current velocity of 0 cm · s?1, whole colonies containing the midge showed overall rates of 14CO2 uptake and nitrogenase activity that were higher than those when the midge was absent (sphere-shaped colonies). Spherical colonies incubated at current velocities of 5-10 cm · s?1did not show higher rates of 14CO2 or 15N2 incorporation than those with the larvae (ear-shaped colonies). Ear-shaped colonies extended well into regions of higher current velocity, whereas spherical colonies did not. Photosynthesis of ear-shaped colonies was stimulated by increased current velocity, increased inorganic C and decreased O2 concentrations. Moreover, levels of O2 at the surface of midge-inhabited colonies decreased with increased current velocity. The morphological change induced by the larva is detrimental (lowers photosynthesis and N2 fixation) in quiescent water but not at current velocities above 10 cm · s?1. This is probably a result of higher diffusion of O2 and CO2 associated with the midge-induced morphology.  相似文献   

10.

Background

Reprogramming adult human somatic cells to create human induced pluripotent stem (hiPS) cell colonies involves a dramatic morphological and organizational transition. These colonies are morphologically indistinguishable from those of pluripotent human embryonic stem (hES) cells. G protein-coupled receptors (GPCRs) are required in diverse developmental processes, but their role in pluripotent colony morphology and organization is unknown. We tested the hypothesis that Gi-coupled GPCR signaling contributes to the characteristic morphology and organization of human pluripotent colonies.

Methodology/Principal Findings

Specific and irreversible inhibition of Gi-coupled GPCR signaling by pertussis toxin markedly altered pluripotent colony morphology. Wild-type hES and hiPS cells formed monolayer colonies, but colonies treated with pertussis toxin retracted inward, adopting a dense, multi-layered conformation. The treated colonies were unable to reform after a scratch wound insult, whereas control colonies healed completely within 48 h. In contrast, activation of an alternative GPCR pathway, Gs-coupled signaling, with cholera toxin did not affect colony morphology or the healing response. Pertussis toxin did not alter the proliferation, apoptosis or pluripotency of pluripotent stem cells.

Conclusions/Significance

Experiments with pertussis toxin suggest that Gi signaling plays a critical role in the morphology and organization of pluripotent colonies. These results may be explained by a Gi-mediated density-sensing mechanism that propels the cells radially outward. GPCRs are a promising target for modulating the formation and organization of hiPS and hES cell colonies and may be important for understanding somatic cell reprogramming and for engineering pluripotent stem cells for therapeutic applications.  相似文献   

11.
Coral metabolism reflects the physiological condition of a coral colony. We studied coral metabolism using a continuous-flow, complete mixing (CFCM) experimental system. Small-size Goniastrea aspera coral colonies were incubated in the CFCM system with and without hydrogen peroxide (H2O2) added to the supplied seawater (0 µM H2O2 for 12 days; 0, 0.3, 3.0, and 30 µM H2O2 for 3 days, for each treatment) Without addition of H2O2, coral metabolism, including photosynthesis (gross primary productivity) and calcification, was relatively stable and there were no significant metabolic changes, suggesting that, without H2O2 added to the CFCM system, the corals did not suffer significant stress from the experimental system over a 12-day incubation period. When H2O2 was added, large decreases in photosynthesis and calcification were observed. The non-parametric Mann–Whitney U-test showed that there were statistically significant differences in photosynthesis after addition of 3.0 µM and 30 µM H2O2, compared with the control. We also found statistically significant differences in net calcification after addition of 30 µM H2O2. Thus, the incubation experiments suggest that higher H2O2 concentrations in seawater clearly influence coral metabolism. However, the results also suggest that the current seawater H2O2 level in Okinawa is not likely to pose significant acute effects on the metabolic activities of corals.  相似文献   

12.
Callus cells of rice (Oryza sativa L.) that were actively dividing in suspension culture had lost the ability to divide during the isolation process of protoplasts. Factors influencing the protoplast viability were examined using highly purified preparations of cellulase C1, xylanase, and pectin lyase, which were essential enzymes for the isolation of protoplasts from the rice cells. The treatment of the cells with xylanase and pectin lyase, both of which are macerating enzymes, caused cellular damage. Xylanase treatment was more detrimental to the cells. Osmotic stress, cell wall fragments solubilized by xylanase, and disassembly of cortical microtubules were not the primary factors which damaged the rice cells and protoplasts. The addition of AgNO3, an inhibitor of ethylene action, to the protoplast isolation medium increased the number of colonies formed from the cultured protoplasts, although the yield of protoplasts was reduced by the addition. Superoxide radical (O2-) was generated from the cells treated with xylanase or pectin lyase. The addition of superoxide dismutase and catalase to the protoplast isolation medium resulted in a marked improvement in protoplast viability especially when the non-additive control protoplasts formed colonies with a low frequency. The addition of glutathione peroxidase and phospholipase A2, which have been known to reduce and detoxify lipid hydroperoxides in membranes, to the protoplast culture medium significantly increased the frequency of colony formation. These results suggested that some of the damage to rice protoplasts may be caused by oxygen toxicity.  相似文献   

13.
Based on two staining protocols, DiOC6(3)/propidium iodide (PI) and RedoxSensor Green (an indicator of bacterial reductase activity)/PI, multi-parameter flow cytometry and cell sorting has identified at least four distinguishable physiological states during batch cultures of Bacillus cereus. Furthermore, dependent on the position in the growth curve, single cells gave rise to varying numbers of colonies when sorted individually onto nutrient agar plates. These growing colonies derived from a single cell had widely different lag phases, inferred from differences in colony size. This further highlights the complex population dynamics of bacterial monocultures and further demonstrates that individual bacterial cells in a culture respond in markedly dissimilar ways to the environment, resulting in a physiologically heterogenous and dynamic population.  相似文献   

14.
15.
In a liquid culture of human bone marrow, the development of fibroblast colonies takes place on days 6 to 9. Twenty percent fetal calf serum is used as the stimulus for fibroblast colony growth. Human bone marrow cells are plated as 2 × 105 cells in the culture. Normal human bone marrow yields 47 ± 4 fibroblasts colonies per 2 × 105 cells plated. Bone marrow fibroblast cultures using agar or methylcellulose restrict colony formation. Marked colony suppression was observed in acute leukemia, and a discrete colony number was observed in hypoplastic anemia. This fibroblast culture method should be applied to a larger number of patients to determine whether it has a pathognomonic value and clinical significance.  相似文献   

16.
Ecology and biodiversity studies of Agrobacterium spp. require tools such as selective media and DNA probes. Tellurite was tested as a selective agent and a supplement of previously described media for agrobacteria. The known biodiversity within the genus was taken into account when the selectivity of K2TeO3 was analyzed and its potential for isolating Agrobacterium spp. directly from soil was evaluated. A K2TeO3 concentration of 60 ppm was found to favor the growth of agrobacteria and restrict the development of other bacteria. Morphotypic analyses were used to define agrobacterial colony types, which were readily distinguished from other colonies. The typical agrobacterial morphotype allowed direct determination of the densities of agrobacterial populations from various environments on K2TeO3-amended medium. The bona fide agrobacterium colonies growing on media amended with K2TeO3 were confirmed to be Agrobacterium colonies by using 16S ribosomal DNA (rDNA) probes. Specific 16S rDNA probes were designed for Agrobacterium biovar 1 and related species (Agrobacterium rubi and Agrobacterium fici) and for Agrobacterium biovar 2. Specific pathogenic probes from different Ti plasmid regions were used to determine the pathogenic status of agrobacterial colonies. Various morphotype colonies from bulk soil suspensions were characterized by colony blot hybridization with 16S rDNA and pathogenic probes. All the Agrobacterium-like colonies obtained from soil suspensions on amended media were found to be bona fide agrobacteria. Direct colony counting of agrobacterial populations could be done. We found 103 to 104 agrobacteria · g of dry soil−1 in a silt loam bulk soil cultivated with maize. All of the strains isolated were nonpathogenic bona fide Agrobacterium biovar 1 strains.  相似文献   

17.
Slight increases or decreases in calcium ions in solutions which supported the growth of Volvox globator colonies caused the colonies to fall to the bottoms of their containers. High speed cinematography (600 frames/sec) showed that the flagella beat normally (21/sec) in balanced electrolyte solutions which have calcium concentrations between 0.5 and 1.0 mM. When colonies were placed in 10.0 or 0.0 mM CaCl2 solutions, flagellar beating disappeared within 1 hr. The cessation of flagellar beating was reversible when colonies were replaced in the balanced solution. The Volvox cell wall has been shown to be a fairly good cation-exchanger with calcium ions acting as the counterion to the fixed negative change. Colonies that were photopositive and gave a cathodal galvanotaxis responded to DC electrical potentials by producing solution patterns that were indicators of colony electronegativity. Colony resistance to electroosmotic flow was compared in potassium and calcium solutions. When colonies were placed in darkness for 24 hr and stimulated by DC electrical potentials, their cation-exchange properties became reduced and the cell walls appeared thinner. Application of a high DC electrical potential to dark-adapted colonies caused the colonies to shrink on their anode sides (anodal contraction). Other workers have found that the flagella on the anodal sides of dark-adapted colonies ceased beating during DC electrical stimulation. It is hypothesized that the electric current caused an increase of calcium ions on the anodal side of the colony that inhibited the flagellar mechanism of beating on that side. It is also hypothesized that the galvanotaxis associated with light-adapted (photopositive) colonies was due to calcium displacements in the colony cell walls that affected the flagellar beating on both sides of the colony.  相似文献   

18.
As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.  相似文献   

19.
Nest ventilation should be particularly relevant for the huge colonies of leaf-cutting ants, genus Atta. Considerable amounts of O2 are consumed and CO2 produced by both the fungus gardens and the ants inside nest chambers, which are located at deep soil layers characterized by high CO2 and low O2 concentrations. In this work, passive nest ventilation was investigated in field Atta capiguara and Atta laevigata nests, first, by evaluating air movements through the nest using propane as tracer gas as well as the CO2 and O2 concentrations of the circulating air, and second, by exposing the internal nest morphology with the use of cement casts and excavations. Results showed that even though outflow of CO2-rich air and inflow of O2-rich air occurred at high-placed and low-placed openings, respectively, supporting a wind-induced interpretation of air movements through the nest, circulating air was never detected inside fungus chambers. The CO2 and O2 levels inside the fungus chambers increased and decreased with increasing soil depth, respectively, and were in the range observed in the soil phase. Based on the underground nest architecture, it is concluded that although the external shape of the nest induces underground air circulation, the inflowing air is unable to directly reach the fungus chambers. It is argued that colony respiration completely depends on diffusive flows between the chamber air and the adjacent nest and soil atmospheres. Circulating air, although not directly renewing the air inside the nest chambers, may contribute to colony respiration by increasing the capacity of the nest and soil airs to act as an O2-source and a CO2-sink, because of the decrease in the CO2 and the increase in the O2 levels in the underground air phase. Possible adaptations of both ants and fungus to the high CO2 and low O2 concentrations usually found in soils are discussed.  相似文献   

20.
Coral mortality and interaction with algae in relation to sedimentation   总被引:4,自引:0,他引:4  
The impact of sedimentation on coral–algal interactions was studied by monitoring tissue mortality and radial growth in two coral species, Colpophyllia natans and Siderastrea siderea, over a continuum of sediment input intensities. This study sets out to investigate (1) whether sedimentation can facilitate algal overgrowth of corals and (2) whether this was a significant cause of coral mortality. Over a 15-month period, 198 coral colonies were tagged and photographed at six sites along two replicate gradients of sediment input, spanning high inputs near river mouths to low inputs at exposed headlands. Photographs were taken so that they covered the interface between colonies and algae. Radial growth was measured along colony edges in contact with algae and unaffected by tissue loss from causes other than competition with algae. To establish whether algal overgrowth was a significant cause of coral mortality, tissue mortality on the colony surface area visible in the photographs was related to different causes, including sediment smothering, disease, and algal overgrowth. Radial growth became negative with increasing proximity to river mouths in C. natans and remained negative or close to zero throughout the gradients in S. siderea, overall suggesting that sedimentation can facilitate algal overgrowth on corals. However, the analysis of tissue mortality revealed that algal overgrowth was a relatively minor cause of tissue loss. In contrast, the most important cause of coral mortality in relation to sedimentation was from sediment smothering, probably during intense episodes of deposition associated with heavy rainfall. We conclude that sedimentation may lead to reef degradation by causing coral mortality through sediment smothering and burial, and then by suppressing the regrowth of surviving adult colonies through increased competition with algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号