首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A thorough re-investigation was undertaken of a variety of factors that might explain the increased uptake of 45Ca2+ by mitochondria isolated from N6, O2'-dibutyryladenosine-3',5'-cyclic monophosphate (DB cyclic AMP)--treated PY815 cells. This showed that mitochondria isolated from DB cyclic AMP treated cells take up 45Ca2+ at a 30 per cent faster rate than mitochondria from untreated cells, although both mitochondria eventually reduce the total external Ca2+ to the same levels. 45Ca2+ precharged mitochondria from DB cyclic AMP-treated cells also leaked 45Ca2+ more slowly than those from untreated cells when they were recovered by filtration. Thus an apparently greater uptake of 45Ca2+ by mitochondria from DB cyclic AMP-treated cells was a consequence of the filtration procedure. In fact, mitochondria from DB cyclic AMP-treated cells contained less total Ca2+ than those from untreated cells, while DB cyclic AMP-treated cells also contained less total Ca2+ than untreated cells. The results suggest that mitochondria do not play an important role in controlling the growth of DB cyclic AMP-treated PY815 cells through effects on cytoplasmic Ca2+ availability.  相似文献   

3.
4.
Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.  相似文献   

5.
6.
7.
Summary Addition of N6,O2′-Dibutyryladenosine cyclic 3′,5′ monophosphate (DB cyclic AMP) plus theophylline or transfer to medium containing 0.2% serum slowed the growth of cultured mouse mastocytoma cells and eventually arrested their growth in G1 phase. Examination of the properties of cells arrested by either procedure suggested that the drugs arrested cells in G1 phase 1.5–2 h after the point of low serum arrest. Cycloheximide prevented the recovery of cell growth after low serum or drug-induced arrest demonstrating that protein synthesis was necessary to pass either growth restriction point. Cordycepin also prevented drug-arrested cells from progressing into cycle indicating a requirement for RNA synthesis to overcome the drug-induced growth arrest. Evidence is also presented that DB cyclic AMP prevented the cells receiving a pulse of calcium necessary to proceed past the DB cyclic AMP-sensitive growth restriction point. It is suggested that high cyclic AMP levels prevent mastocytoma cells from receiving a surge of calcium in G1 phase that is necessary if the cells are to proceed to S phase and eventually divide.  相似文献   

8.
9.
The ability of mouse mastocytoma cells to take up 45Ca2+ was measured in normal growth medium. As previously observed in physiological buffers with succinate and Pi, cells grown for 18h with N6,O2'-dibutyryladenosine 3',5' cyclic monophosphate (DB cyclic AMP) to inhibit growth took up more 45Ca2+ than untreated cells. However 45Ca2+ uptake by cells in growth medium was less sensitive to respiratory inhibitors or uncouplers than 45Ca2+ uptake in physiological buffer. Increased 45Ca2+ uptake by 18h cyclic nucleotide-treated cells was not a result of tighter mitochondrial coupling since mitochondria prepared from cyclic nucleotide-treated cells were less coupled than those from untreated cells. Nevertheless studies with uncouplers suggested that the bulk of the intracellular Ca2+ was associated with mitochondria. DB cyclic AMP-treated cells contained less total Ca2+ than untreated cells indicating that net Ca2+ efflux occurred during the 18h period of drug treatment. These observations suggest that Ca2+ fluxes increase in DB cyclic AMP-treated PY815 cells and that a net efflux of Ca2+ occurs during growth inhibition by the cyclic nucleotide.  相似文献   

10.
Chinese hamster ovary cells were synchronized by selective detachment of cells in mitosis. The adenosine 3':5'-cyclic monophosphate (cyclic AMP) intracellular concentrations and cyclic AMP-dependent protein kinase activities were measured as these cells traversed G1 phase and entered S phase. Protein kinase activity, assayed in the presence or absence of saturating exogenous cyclic AMP in the reaction mixture, was lowest in early G1 phase (2 h after mitosis), increased 2-fold (plus exogenous cyclic AMP in reaction mixture) or 3.5-fold (minus cyclic AMP in reaction mixture) to maximum values in mid to late G1 phase (4-5 h after mitosis), and then decreased as cells entered S phase. Intracellular cyclic AMP concentrations were minimal 1 h after mitosis, increased 5-fold to maximum levels at 4-6 after mitosis, and decreased as cells entered S phase. Similar to the fluctuations in intracellular cyclic AMP, the cyclic AMP-dependent protein kinase activity ratio increased more than 40% in late G1 or early S phase. Puromycin (either 10 mug/ml or 50 mug/ml) administered 1 h after mitosis inhibited cyclic AMP-dependent protein kinase activity up to 50% by 5 h after mitosis, while similar treatment (10 mug/ml) had no effect on the increase in cyclic AMP formation. These data demonstrate that: (1) total protein kinase activity changed during G1 phase and this increase was dependent on new protein synthesis; (2) the increased intracellular concentrations of cyclic AMP were not dependent on new protein synthesis; and (3) the activation of cyclic AMP-dependent protein kinase was temporally coordinated with increased intracellular concentration of cycli AMP as Chinese hamster ovary cells traversed G1 phase and entered S phase. These results suggest that cyclic AMP acts during G1 phase to regulate the activation of cyclic AMP-dependent protein kinase.  相似文献   

11.
Cell cycle dependent growth factor regulation of gene expression   总被引:2,自引:0,他引:2  
The expression of the proto-oncogenes c-fos and c-myc is a rapid response of G0-arrested fibroblasts to serum and peptide growth factors; however, the role of the c-fos and c-myc gene products in subsequent cell cycle transit is not understood. We examined the expression of c-fos and c-myc mRNA in Balb/c 3T3 murine fibroblasts in response to platelet-derived growth factor (PDGF) and platelet-poor plasma, using arrest points associated with density dependent growth inhibition or metabolic inhibition to synchronize cells in S phase of the cell cycle. The expression of c-fos and c-myc mRNA in Balb/c 3T3 cells was differentially regulated with respect to growth factor dependence and cell cycle dependence. c-fos expression was induced in the presence of PDGF and was unaffected by plasma. The induction of c-fos expression in response to PDGF was cell cycle independent, occurring in cells transiting S phase and G2 as well as in G0 arrest. In contrast, c-myc expression was both growth factor and cell cycle dependent. In G0 arrested cells, c-myc expression was PDGF-dependent and plasma-independent, and PDGF was required for maintenance of elevated c-myc levels during G1 transit. In cells transiting S phase, c-myc mRNA was induced in response to PDGF, but was also plasma-dependent in S phase cells that had been "primed" by exposure to PDGF during S phase.  相似文献   

12.
siRNA抑制c—myc基因的表达对宫颈癌细胞增殖的影响   总被引:1,自引:0,他引:1  
张晓  葛银林  侯琳  薛美兰 《生物磁学》2008,(6):1081-1084
目的:利用siRNA(small interference RNA)技术研究C-myc基因的对宫颈癌HeLa细胞增殖的影响。方法:依据Promega公司在网上提供的设计软件,设计针对C-myc基因的siRNA,合成DNA模板,体外转录合成siRNA。通过阳离子聚合物jet—SITM—ENDO将合成的siRNA转染入HeLa细胞,以未转染细胞以及错义序列siRNA—scr转染细胞为对照。用细胞计数法检测siRNA对HeLa细胞增殖的影响。流式细胞法检测细胞周期及蛋白表达的变化,RT—PCR法比较转染前后C-myc mRNA表达水平的变化。结果:细胞计数法结果显示,转染24h后c-myc基因siRNA明显抑制MCF-7细胞增殖,转染48h后,抑制效率稳定。c-myc基因siRNA转染后能有效地抑制HeLa细胞的增殖,阻滞细胞周期于G0/G1期,siRNA转染组c-myc mRNA、蛋白的表达量明显低于空白对照组、错义序列组。结论:体外转录合成的siRNA可有效降低HeLa细胞c-myc基因的表达,抑制细胞增殖。  相似文献   

13.
Cyclic adenosine monophosphate arrests proliferating T lymphocytes in the G1 phase of the cell cycle. Here we demonstrate that exogenous and endogenous elevations in cyclic AMP concentration result in diminished mitogen stimulation, cell cycle arrest, and decreased ribonucleotide reductase messenger RNA concentrations in peripheral blood mononuclear cells. At lower concentrations (less than 1mM) of dibutyryl cyclic AMP that do not generate cell cycle arrest there is inhibition of ribonucleotide reductase activity without decreased messenger RNA concentration for the M2 subunit of ribonucleotide reductase. However, at higher concentrations of dibutyryl cyclic AMP there is G1 cell cycle arrest and reduced M2 specific messenger RNA concentration. Thus, cyclic AMP inhibition of lymphocyte activation may occur by different mechanisms that are dose dependent.  相似文献   

14.
15.
To gain insight into the mechanism of the antiproliferative effects of heparin on vascular smooth muscle cells (SMC), the influence of this glycosaminoglycan on cell cycle progression and the expression of the c-fos, c-myc, and c-myb proto-oncogenes and two other growth-regulated genes was examined. SMC, synchronized by a serum-deprivation protocol, enter S phase 12-16 h after serum stimulation. Pretreatment with heparin for 48 h blocked the induction of histone H3 RNA, an S phase-expressed product, and prevented cell replication. Thus, heparin prevents entry of cells into S phase. Conversely, heparin had essentially no effect on changes in expression of the c-fos and c-myc proto-oncogenes during the G0 to G1 transition. Normal increases in c-fos and c-myc RNA were observed 30 min and 2 h following serum addition, respectively. However, the increase in expression of the mRNA of the c-myb proto-oncogene and the mitochondrial ATP/ADP carrier protein, 2F1, which begins to occur 8 h following serum addition to SMC, was completely inhibited by heparin. Two-dimensional polyacrylamide gel electrophoresis of the products of a rabbit reticulocyte cell-free translation of RNA isolated at various times confirmed this temporal assessment of the effects of heparin. These results suggest that heparin does not inhibit cell proliferation by blocking the G0 to G1 transition. Rather, heparin may affect a critical event in the mid-G1 phase of the cell cycle which is necessary for subsequent DNA synthesis.  相似文献   

16.
The stimulation of DNA synthesis in quiescent, density-arrested BALB/c-3T3 cells by platelet-derived growth factor in plasma-supplemented medium was inhibited by the presence of isobutylmethylxanthine (IBMX) and cholera toxin, although neither IBMX or cholera toxin when used alone inhibited the stimulation of DNA synthesis. The cells were reversibly inhibited in mid G1 at a point 6 hr prior to the initiation of DNA synthesis. The inhibition of cell cycle traverse was associated with a 10-15 fold increase in cellular cyclic AMP concentration over basal levels. The reversal of this inhibition by removal of IBMX was correlated with a dramatic decrease in cyclic AMP levels. The traverse of G1 and the initiation of DNA synthesis after release from the cholera toxin and IBMX inhibition was dependent on the presence of plasma in the medium. Either somatomedin C (10-20 ng/ml) or insulin (10(-6)-10(-5) M) completely replaced the plasma requirement for late G1 progression and entry into S phase. Once the inhibited cells were released from the IBMX and cholera toxin block a subsequent increase in cyclic AMP did not prevent entry into S phase. The presence of cholera toxin alone inhibited the stimulation of human dermal fibroblasts. The elevation of intracellular cyclic AMP levels in the human dermal fibroblasts by cholera toxin was two to three fold greater than that found in the BALB/c-3T3 cells in the presence of cholera toxin and the IBMX.  相似文献   

17.
Three cascades activate thyroid cell proliferation: the EGF-protein tyrosine kinase pathway, the phorbol ester-protein kinase C pathway and the thyrotropin-cyclic AMP pathway. While the first 2 cascades converge early, they remain distinct from the cyclic AMP cascade until very late in G1. The cyclic AMP cascade is characterized by an early and transient expression of c-myc, which may explain why it induces proliferation and differentiation expression. Constitutive activation of this cascade causes growth and hyperfunction, ie, hyperfunctioning adenomas. The various possible defects that could lead to such a constitutive activation are discussed.  相似文献   

18.
The properties of type I and type II protein kinases in PY815 mouse mastocytoma cells were shown to change following growth inhibition by prostaglandin E1 and 3-isobutyl-1-methylxanthine. These changes included a large reduction in type I protein kinase consistent with a role for this isoenzyme as a positive effector of growth, a decrease in free cyclic AMP binding protein and an increase in type II protein kinase. Some properties of the fully activated isoenzymes are presented that may be important in determining their activity in vivo.  相似文献   

19.
Regulation of purine biosynthesis in G1 phase-arrested mammalian cells   总被引:1,自引:0,他引:1  
The effects of G1 phase growth arrest on purine biosynthesis were studied in cultured S49 T lymphoma cells. Incubations of wildtype S49 cells for 18 hr with dibutyryl cyclic AMP or forskolin, two agents which induced G1 arrest, reduced the rates of purine biosynthesis by 95%. Time course and concentration dependence studies indicated that the decrease in rates of purine biosynthesis correlated with the extent of G1 phase arrest. Similar studies with somatic cell mutants deficient in some component of cyclic AMP action or metabolism indicated that the depression in purine synthetic rates required G1 arrest and did not result from cell death. Rates of RNA and DNA synthesis were also markedly diminished in the growth arrested cells. Measurements of purine rates in the presence of azaserine indicated that the block in purine biosynthesis was prior to the formation of phosphoribosylformylglycinamide. Additionally, the activities of adenylosuccinate synthetase and IMP dehydrogenase were diminished in G1 arrested cells. The levels of all controlling enzymes, substrates, and cofactors, however, were not diminished in G1 arrested cells. Despite diminished rates of purine biosynthesis, the amounts of intracellular nucleotides in G1 cells were equivalent to those in exponentially growing cells. However, the concentrations of intracellular nucleotides were 30-50% higher in the growth arrested cells. These results suggested that perturbations in the consumption of nucleotides via inhibition of nucleic acid synthesis have profound effects on the purine pathway and indicated the importance of feedback inhibition by nucleotides in the regulation of purine synthesis in situ.  相似文献   

20.
The MDA-468 human breast cancer cell line displays the unusual phenomenon of growth inhibition in response to pharmacological concentrations of EGF. This study was initiated with the objective of elucidating the cellular mechanisms involved in EGF-induced growth inhibition. Following EGF treatment the percentage of MDA-468 cells in G1 phase increased, together with a concomitant depletion in S and G2/M phase populations, as revealed by flow cytometry of DNA content. The apparent G1 block in the cell cycle was confirmed by treating the cells with vinblastine. DNA synthesis was reduced to about 35% of that measured in control, untreated cells after 48 h of EGF treatment, as measured by the incorporation of [3H]thymidine. DNA synthesis returned to normal following the removal of EGF from the growth-arrested cells. In order to locate the EGF-induced event responsible for the G1 arrest more precisely, we examined the expression of certain cell cycle-dependent genes by Northern blot analysis. EGF treatment did not alter either the induction of the early G1 marker, c-myc, or the expression of the late G1 markers, proliferating cell nuclear antigen, and thymidine kinase. However, EGF-treated cells revealed down regulation of p53 and histone 3.2 expression, which are expressed at the G1/S boundary and in S phase, respectively. These results indicate that EGF-induced growth inhibition in MDA-468 human breast cancer cells is characterized by a reversible cell cycle block at the G1/S boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号