首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The relationship between the morphology and indole alkaloid production of Catharanthus roseus cells was investigated. Eleven cell lines were randomly selected from protoplast-derived clones. In each line, most of the cells maintained only one of the two shapes, either spherical or cylindrical. The cell aspect ratio (cell length/width) for most isolates was stable for more than two years of subculture. Cell division patterns of spherical and cylindrical cell isolates were different and patterns of division remained stable in each phenotype and were not considerably affected by auxin or cytokinin levels in the culture media. These observations indicate that cell morphology of our isolates is stable and probably internally determined. Production of the indole alkaloids, ajmalicine and catharanthine was significantly greater when the cell aspect ratio was more than 2.8.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BA 6-benzyladenine - CPA p-chlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige and Skoog (1962) medium - SH Schenk and Hildebrandt (1972) medium  相似文献   

2.
Catharanthine production in Catharanthus roseussuspension cell cultures was increased by about 4-fold to 28 mg l–1, 23 mg l–1and 24 mg l–1by adding sodium alginate, mannitol or polyvinyl pyrrolidone, respectively. Sodium alginate and polyvinyl pyrrolidone also enhanced ajmalicine production to 28 mg l–1and 31 mg l–1, respectively. Up to 55–70% of the total alkaloids were released into the medium. These treatments could stimulate higher alkaloid production in C. roseuscell cultures than NaCl and KCl stresses. The possible mechanisms for these treatment effects are discussed.  相似文献   

3.
Catharanthus roseus plants produce many pharmaceutically important indole alkaloids, of which the bisindole alkaloids vinblastine and vincristine are antineoplastic medicines and the monoindole alkaloids ajmalicine and serpentine are antihypertension drugs. C. roseus cell cultures have been studied for producing these medicines or precursors catharanthine and vindoline for almost four decades but so far without a commercially successful process due to biological and technological limitations. The research thus focused on the one hand on engineering the bioreactor process on the other engineering the cell factory itself. This review mainly summarizes the progress made on biochemical engineering aspects of C. roseus cell cultures in bioreactors in the past decades and metabolic engineering of indole alkaloid production in recent years. The paper also attempts to highlight new strategies and technologies to improve alkaloid production and bioreactor performance. Perspectives of metabolic engineering to create new cell lines for large-scale production of indole alkaloids in bioreactors and effective combination of these up- and down-stream processing are presented.  相似文献   

4.
Hairy roots ofCatharanthus roseus obtained by co-cultivation of hypocotyl segments withAgrobacterium rhizogenes, and cultured in SH (Schenk and Hildebrandt) basal medium, formed two types of calli when subcultured in SH medium with 1 mg/1 -naphthaleneacetic acid and 0.1 mg/l kinetin. One of them, a compact callus, when re-subcultured in SH basal medium gave rise to hairy roots again. A rhizogenic cell suspension culture was established from this type of callus. When cultured in SH medium with growth regulators, the rhizogenic callus produced catharanthine at a level of 41% of the level in the initial hairy roots. Upon transfer to SH basal medium, regenerated hairy roots produced this alkaloid at the original level of 1.5 mg/g dry wt. Using this cell/hairy root interchange system a new management system for hairy root culture in bioreactors has been devised and examined involving production of biomass in the form of a cell suspension in medium supplemented with growth regulators, and catharanthine production by hairy roots regenerated from these cells in medium without growth regulators.Abbreviations NAA -naphthaleneacetic acid - SH Schenk and Hildebrandt - SHNK SH medium + 1 mg 1–1 NAA + 0.1 mg 1–1 kinetin  相似文献   

5.
Production of the indole alkaloids, ajmalicine or catharanthine, in cell suspension cultures of Catharanthus roseus was enhanced by cerium (CeO2 and CeCl3), yttrium (Y2O3) and neodymium (NdCl3). The yield of ajmalicine in these treated-cultures reached 51 mg l–1 (CeO2), 40 mg l–1 (CeCl3), 41 mg l–1 (Y2O3) and 49 mg l–1 (NdCl3) while catharanthine production reached to 36 mg l–1 (CeO2) and 31 mg l–1 (CeCl3). A major portion of increased alkaloids was released into medium in these treatments. But Sm2O3, SmCl3, La2O3, LaCl3, complex of chromium (III)-titanium (IV) and NaSeO4 treatments had little effect on alkaloid production of C. roseus cell cultures.  相似文献   

6.
Feeding stemmadenine to Catharanthus roseus cell suspension culture resulted in the accumulation of catharanthine, tabersonine and condylocarpine. Condylocarpine is not an intermediate in the pathway to catharanthine or tabersonine when it is fed to the cultures. The results support the hypothesis that stemmadenine is an intermediate in the pathway to catharanthine and tabersonine.  相似文献   

7.
A callus strain with stable ability for vindoline synthesis was selected from many prepared Catharanthus roseus leaf calli to study the regulation of vindoline biosynthesis as well as other indole alkaloids. It was shown that light and plant growth regulators significantly influenced the biosynthesis of vindoline and other alkaloids as well as acidic and basic peroxidase activities. Light promoted vindoline and serpentine biosynthesis, and stimulated plastid development and peroxidase activity. However, 2,4-D suppressed the biosynthesis of all indole alkaloids and peroxidase activity. Our results suggest that light or plant hormones regulate vindoline, serpentine and other alkaloid biosynthesis and accumulation by influencing peroxidase activity and the differentiation status of callus cultures, especially chloroplast development. Some possible relationships between serpentine or vindoline biosynthesis and peroxidase activity are proposed.  相似文献   

8.
A special culture system, compact callus clusters, was developed from Catharanthus roseus stem explants in a modified Murashige and Skoog (MS) liquid medium containing 5.37 µM -naphthaleneacetic acid and 4.65 µM kinetin. Morphological and anatomical studies showed that the globular compact callus cluster cultures consisted of many cohesive callus aggregates displaying some level of cellular/tissue differentiation, which was also in agreement with the results from peroxidase and esterase isoenzyme pattern analysis. The compact callus cluster cultures could synthesise about 2-fold more indole alkaloids than the dispersed cell cultures, and this was postulated to be associated with their differential status. Plant growth regulators and sucrose concentration, as well as shaking speed significantly affected properties of the compact callus clusters. In detail, 2,4-dichlorophenoxyacetic acid destroyed the compact structure and reduced alkaloid production of the compact callus cluster cultures; but a high concentration of cytokinins was necessary to maintain the compact structure and high alkaloid production of the special cultures. The optimum sucrose (5–6%) gave the greatest alkaloid and biomass production, as well as the greatest degree of compaction of the compact callus clusters.  相似文献   

9.
Tryptophan decarboxylase (TDC, EC 4.1.1.28) from Catharanthus roseus hairy roots was purified 80-fold. Antibodies against TDC were obtained and they recognized only one protein of 55 kDa in crude extracts from hairy root cultures. Elicitation of transformed root cultures with macerozyme yielded a marked increase in TDC activity, which was accompanied by a similar increase in the amount of immunoreactive TDC protein. These results suggest that the alkaloid accumulation, produced by elicitation, requires the synthesis of new TDC polypeptide in C. roseus root cultures and establishes important differences in the regulatory control of this enzyme in root cultures compared to developing seedlings, where the posttranslational regulation apparently plays a major role.  相似文献   

10.
During growth, Catharanthus roseus cells exhibit an acidification of the culture medium that may be controlled by Ca2+. With a view to enhance the productivity of alkaloids by plant cells, the effect of extracellular pH modifications on the excretion processes has been investigated. Ca2+ dependent proton pumping leads to the release of various lipophilic amine-like compounds (benzylamine, methylamine, nicotine) initially accumulated by the cells, but also facilitates the excretion of endogenous ajmalicine. Once released in the medium, these compounds are however taken up again by the cells, probably as the charged form. For the alkaloid contained in C. roseus some evidence suggests that the diffusible form comes from the cytosolic compartment and not from the storage vacuoles. This appears to be a major production limitation to the use of pH gradients in order to favour alkaloid excretion.  相似文献   

11.
Salt treatment strongly affected cell growth by decreasing dry weight. Exposure of Catharanthus roseus cell suspensions to increasing salinity significantly enhanced total lipid (TL) content. The observed increase is mainly due to high level of phospholipids (PL). Hundred mM NaCl treatment increased phospholipid species phosphatidylcholine (PC) and phosphatidylethanolamine (PE), whereas it reduced glycolipid ones monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) but not sulfoquinovosyldiacylglycerol (SQDG). Moreover, fatty acid composition was clearly modified when cells were cultured in the presence of 100 mM NaCl, whereas only few changes occurred at 50 mM. Salt treatment decreased palmitic acid (16:0) level and increased that of linolenic acid (18:2). Such effect was observed in phospholipid species PC and PE and in glycolipid DGDG. Double bond index (DBI) was enhanced more than 2-fold in fatty acids of either glycolipids or phospholipids from cells submitted to 100 mM NaCl. Free sterol content was also significantly enhanced, especially at 100 mM NaCl, whereas free sterols/phospholipids (St/PL) ratio was slightly decreased. All these salt-induced changes in membrane lipids suggest an increase in membrane fluidity of C. roseus cells.  相似文献   

12.
In vitro cultures of hairy root derived from Catharanthus roseus accumulate higher levels of indole alkaloids than cell suspension cultures. Hairy roots were interconverted to undifferentiated cells by manipulation of the culture medium. When the concentration of micronutrients in the culture medium was five times that of Phillips and Collins (1979) medium, cell suspensions formed from the hairy roots. The alkaloid content was five times lower in the cell suspensions than in the control, but upon regeneration of the roots the alkaloid content regained its original level. The formation of cell suspensions from hairy roots was also accompanied by a reduction in tryptophan decarboxylase and the strictosidine synthase activity to less than 5% and 30%, respectively. 3-Hydroxymethylglutaryl coenzyme A reductase activity was the same in the cell suspension and in the regenerated line. Received: 12 February 1998 / Revision received: 21 May 1998 / Accepted: 5 June 1998  相似文献   

13.
Summary Removal of gaseous metabolites in an aerated fermenter affects ajmalicine production by Catharanthus roseus negatively. Therefore, the role of CO2 and ethylene in ajmalicine production by C. roseus was investigated in 3 l fermenters (working volume 1.8 l) with recirculation of a large part of the exhaust air. Removal of CO2, ethylene or both from the recirculation stream did not have an effect on ajmalicine production. Inhibition of ethylene biosynthesis in shake flasks with Co2+, Ni2+ or aminooxyacetic acid did not affect ajmalicine production. However, the removal of CO2 did enhance the amount of extracellular ajmalicine.  相似文献   

14.
Cytokinins play a critical role in several aspects of plant growth, metabolism and development. We previously reported that adding cytokinins to the culture medium of a suspension-cultured cell line of periwinkle increased the accumulation of indole alkaloids, and our aim was to compare the effect of exogenously-applied cytokinins with that of elevated levels of endogenous cytokinins on indole alkaloid production. We used an Agrobacterium tumefaciens strain yielding a plasmid with the isopentenyl transferase gene under control of its own promoter. Co-culture of suspension cells with the bacteria caused a severe stress response leading to cell necrosis. Therefore, we failed to transform this material but we succeeded in transforming periwinkle cotyledons. We verified that callus cultures generated from the isopentenyl transferase-transgenic cotyledons accumulated high cytokinin concentrations. Treating normal callus cultures (generated from untransformed cotyledons) with cytokinins enhanced their alkaloid production. By contrast, the enhanced concentration of endogenous cytokinins in transgenic calli did not increase indole alkaloid production, and thus did not mimic the effect of exogenously-applied cytokinins. Hypothesis to explain this discrepancy are discussed.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - DW dry cell mass - ipt isopentenyl transferase gene  相似文献   

15.
Treatment of Catharanthus roseus hairy roots with antagonists, like verapamil and CdCl2, that block the Ca2+ flux across the plasma membrane enhanced the total alkaloid content by 25% and their secretion 10 times. The specific Ca2+ chelator, EGTA, stimulated 90% of the total alkaloid secretion. Treatment with inhibitors of intracellular Ca2+ movement, like TMB-8 and trapsigargin, enhanced the total alkaloid content by 74% and their secretion into the culture media by 4- to 6-fold. The results suggest that an inhibition of external and internal Ca2+ fluxes induces an increase in the indole alkaloid accumulation and secretion in C. roseus hairy roots.  相似文献   

16.
Here the current status of knowledge on some well-characterized transporters located in the vacuolar membrane is reviewed. As different cellular compartments and even different cells may be involved in certain steps of a biosynthetic pathway, the regulation of the flux is not only dependent on structural genes encoding enzymes catabolizing certain steps but also transport has a major regulatory function. The aim of the present review is to give an overview of the present knowledge of transport of secondary metabolites in plants, and to use this information in the context of our knowledge about Catharanthus roseus alkaloid biosynthesis. This should lead to further insight in the possible role of various transporters in the regulation of the biosynthesis of these alkaloids.  相似文献   

17.
Cell cultures of Catharanthus roseus were scaled up to volumes of 50001 using conventional reactors equipped with flat-blade impellers. The behavior of the fermenter grown cells was compared with corresponding shake flask experiments with respect to growth and indole alkaloid inducibility and production. The limits and problems of transferring shake flask experiments of culture systems such as Catharanthus, in which alkaloid production depends greatly upon the physiological state of the cells, to large scale multistage processes is discussed.  相似文献   

18.
Summary Tryptophan decarboxylase (TDC), the enzyme that catalyzes the decarboxylation of tryptophan to trytamine, was studied in aCatharanthus roseus transformed root culture. Its activity was evaluated through the culture cycle (36 days), along with the variations in the tryptamine pool as well as the accumulation of alkaloids. Ajmalicine and catharanthine contents in the tissues increased coordinately with an increase in TDC-specific activity after 18 days of growth. No dramatic shifts were observed for the total alkaloid and tryptamine profiles.  相似文献   

19.
A Catharanthus roseus cell line was cultured in a 14-l bioreactor. Total alkaloid production decreased more than 80% while scaling up this cell line from 250 ml batch cultures to the bioreactor. However, the subsequent application of an osmotic stress and 1 mM trans-cinnamic acid, which inhibits the synthesis of phenolic compounds, restored the original alkaloid amounts.  相似文献   

20.
Vindoline, the major alkaloid in cultures of Catharanthus roseus shoots, reached 2 mg g(-1) dry wt after 27 d in culture. Maximal vindoline accumulation coincided with maximum activities of deacetoxyvindoline 4-hydroxylase, deacetylvindoline acetyl-CoA acetyl transferase and tryptophan decarboxylase. Shoot exposure to jasmonate shortened the time required for the maximal vindoline accumulation to 14 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号