首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID in silico using three prediction tools and in living cells using both single-cell colocalization image analysis and nuclear translocation analysis. We confirmed the mitochondrial localization of endonuclease G and AIF by prediction analysis and by single-cell colocalization image analysis. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the membranes of various organelles. The highest concentration of AMID was observed associated with the Golgi. Colocalization of AMID with lysosomes was also indirectly confirmed by analysis of AMID-rich vesicle velocity using manual tracking analysis. Bioinformatic analysis also detected nuclear localization signals in endonuclease G and AIF, but not in AMID. A novel analysis of time-lapse fluorescence image data during staurosporine-induced apoptosis revealed nuclear translocation only for endonuclease G and AIF.  相似文献   

2.
AMID (apoptosis-inducing factor (AIF)-like mitochondrion-associated inducer of death) is a poorly studied member of the AIF family; despite the given name AMID, predicting its association with mitochondria, its real cellular localization, as well as its role and changes during apoptosis are currently unclear. By means of MALDI-TOF mass spectrometry, we have identified as AMID (accession number AAH38129, sequence coverage 31%) the protein isolated by Pisum sativum lectin-affinity chromatography from the plasma membrane fraction of apoptotic murine leukemia L1210 cells, lacking in the intact cells. The obtained results suggest its possible glycosylation that was further suggested by finding N-glycosylation sequon in the signal peptide of AMID protein (in silica), and by predicting transmembrane localization of its N-terminal part. Using monoclonal antibodies to AMID, we demonstrated an increased expression of AMID in human leukemia Jurkat T-cells after apoptosis induction. Immunocytochemical study suggested its association to the plasma membrane.  相似文献   

3.
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that triggers caspase-independent apoptosis. We describe here the cloning and characterization of a novel AIF-homologous molecule designated AMID (AIF-homologous mitochondrion-associated inducer of death). AMID lacks a mitochondrial localization sequence but shares significant homology with AIF and NADH oxidoreductases from bacteria to mammalian species. Immunofluorescent staining and biochemical experiments indicated that AMID was co-localized with mitochondria. Overexpression of AMID induced cell death with characteristic apoptotic morphology. Furthermore, AMID-induced apoptosis was independent of caspase activation and p53 and was not inhibited by Bcl-2. These findings suggest that AMID induces a novel caspase-independent apoptotic pathway.  相似文献   

4.
Apoptosis is a natural form of cell death involved in many physiological changes in the cell. Defects in the process of apoptosis can lead to serious diseases. During some apoptotic pathways, proteins apoptosis-inducing factor (AIF) and endonuclease G (EndoG) are released from the mitochondria and they translocate into the cell nuclei, where they probably participate in chromatin degradation together with other nuclear proteins. Exact mechanism of EndoG activity in cell nucleus is still unknown. Some interacting partners like flap endonuclease 1, DNase I, and exonuclease III were already suggested, but also other interacting partners were proposed. We conducted a living-cell confocal fluorescence microscopy followed by an image analysis of fluorescence resonance energy transfer to analyze the possibility of protein interactions of EndoG with histone H2B and human DNA topoisomerase II alpha (TOPO2a). Our results show that EndoG interacts with both these proteins during apoptotic cell death. Therefore, we can conclude that EndoG and TOPO2a may actively participate in apoptotic chromatin degradation. The possible existence of a degradation complex consisting of EndoG and TOPO2a and possibly other proteins like AIF and cyclophilin A have yet to be investigated.  相似文献   

5.
The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.  相似文献   

6.
Apoptosis-inducing factor (AIF) and AMID (AIF-homologous mitochondrion-associated inducer of death) are flavoproteins. Although AIF was originally discovered as a caspase-independent cell death effector, bioenergetic roles of AIF, particularly relating to complex I functions, have since emerged. However, the role of AIF in mitochondrial respiration and redox metabolism has remained unknown. Here, we investigated the redox properties of human AIF and AMID by comparing them with yeast Ndi1, a type 2 NADH:ubiquinone oxidoreductase (NDH-2) regarded as alternative complex I. Isolated AIF and AMID containing naturally incorporated FAD displayed no NADH oxidase activities. However, after reconstituting isolated AIF or AMID into bacterial or mitochondrial membranes, N-terminally tagged AIF and AMID displayed substantial NADH:O2 activities and supported NADH-linked proton pumping activities in the host membranes almost as efficiently as Ndi1. NADH:ubiquinone-1 activities in the reconstituted membranes were highly sensitive to 2-n-heptyl-4-hydroxyquinoline-N-oxide (IC50 = ∼1 μm), a quinone-binding inhibitor. Overexpressing N-terminally tagged AIF and AMID enhanced the growth of a double knock-out Escherichia coli strain lacking complex I and NDH-2. In contrast, C-terminally tagged AIF and NADH-binding site mutants of N-terminally tagged AIF and AMID failed to show both NADH:O2 activity and the growth-enhancing effect. The disease mutant AIFΔR201 showed decreased NADH:O2 activity and growth-enhancing effect. Furthermore, we surprisingly found that the redox activities of N-terminally tagged AIF and AMID were sensitive to rotenone, a well known complex I inhibitor. We propose that AIF and AMID are previously unidentified mammalian NDH-2 enzymes, whose bioenergetic function could be supplemental NADH oxidation in cells.  相似文献   

7.
RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding.  相似文献   

8.
Connexin 43 (Cx43), the gap junction protein involved in cell‐to‐cell coupling in the heart, is also present in the subsarcolemmal fraction of cardiomyocyte mitochondria. It has been described to regulate mitochondrial potassium influx and respiration and to be important for ischaemic preconditioning protection, although the molecular effectors involved are not fully characterized. In this study, we looked for potential partners of mitochondrial Cx43 in an attempt to identify new molecular pathways for cardioprotection. Mass spectrometry analysis of native immunoprecipitated mitochondrial extracts showed that Cx43 interacts with several proteins related with mitochondrial function and metabolism. Among them, we selected for further analysis only those present in the subsarcolemmal mitochondrial fraction and known to be related with the respiratory chain. Apoptosis‐inducing factor (AIF) and the beta‐subunit of the electron‐transfer protein (ETFB), two proteins unrelated to date with Cx43, fulfilled these conditions, and their interaction with Cx43 was proven by direct and reverse co‐immunoprecipitation. Furthermore, a previously unknown molecular interaction between AIF and ETFB was established, and protein content and sub‐cellular localization appeared to be independent from the presence of Cx43. Our results identify new protein–protein interactions between AIF‐Cx43, ETFB‐Cx43 and AIF‐ETFB as possible players in the regulation of the mitochondrial redox state.  相似文献   

9.
Autophagy is a self-degradative process that is crucial for maintaining cellular homeostasis by removing damaged cytoplasmic components and recycling nutrients. Such an evolutionary conserved proteolysis process is regulated by the autophagy-related (Atg) proteins. The incomplete understanding of plant autophagy proteome and the importance of a proteome-wide understanding of the autophagy pathway prompted us to predict Atg proteins and regulators in Arabidopsis. Here, we developed a systems-level algorithm to identify autophagy-related modules (ARMs) based on protein subcellular localization, protein–protein interactions, and known Atg proteins. This generates a detailed landscape of the autophagic modules in Arabidopsis. We found that the newly identified genes in each ARM tend to be upregulated and coexpressed during the senescence stage of Arabidopsis. We also demonstrated that the Golgi apparatus ARM, ARM13, functions in the autophagy process by module clustering and functional analysis. To verify the in silico analysis, the Atg candidates in ARM13 that are functionally similar to the core Atg proteins were selected for experimental validation. Interestingly, two of the previously uncharacterized proteins identified from the ARM analysis, AGD1 and Sec14, exhibited bona fide association with the autophagy protein complex in plant cells, which provides evidence for a cross-talk between intracellular pathways and autophagy. Thus, the computational framework has facilitated the identification and characterization of plant-specific autophagy-related proteins and novel autophagy proteins/regulators in higher eukaryotes.  相似文献   

10.
11.
12.
AMID (apoptosis-inducing factor-homologous mitochondrion-associated inducer of death; also known as PRG3 (p53-responsive gene 3)) is a human caspase-independent pro-apoptotic protein with some similarity to apoptosis-inducing factor. AMID was purified from a recombinant bacterial host, enabling biochemical analysis of the protein. AMID is a flavoprotein; possesses NAD(P)H oxidase activity; and catalyzes NAD(P)H-dependent reduction of cytochrome c and other electron acceptors, including molecular oxygen. NADPH binds approximately 10-fold tighter than NADH. AMID binds 6-hydroxy-FAD (a cofactor that accumulates only adventitiously and at low abundance in other flavoprotein enzymes) to form a stoichiometric cofactor.protein complex. AMID has a distinctive electronic spectrum due to the modified flavin. NAD(P)+ binding perturbed the spectrum, enabling determination of K(d) values for these coenzymes. 6-Hydroxy-FAD could be removed from AMID and the apoprotein reconstituted with FAD. FAD was converted to 6-hydroxy-FAD in reconstituted AMID during aerobic turnover with NADPH. AMID is a DNA-binding protein that lacks apparent DNA sequence specificity. Formation of the protein.DNA complex (i) effected a major protein conformational change and (ii) was prevented in the presence of nicotinamide coenzyme. Apo-AMID retains DNA binding activity. Our studies establish a link between coenzyme and DNA binding that likely impacts on the physiological role of AMID in cellular apoptosis.  相似文献   

13.
Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently‐used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower‐abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox ( http://suba.live ).  相似文献   

14.
Genetic variation is the major mechanism behind adaptation and evolutionary change. As most proteins operate through interactions with other proteins, changes in protein complex composition and subunit sequence provide potentially new functions. Comparative genomics can reveal expansions, losses and sequence divergence within protein-coding genes, but in silico analysis cannot detect subunit substitutions or replacements of entire protein complexes. Insights into these fundamental evolutionary processes require broad and extensive comparative analyses, from both in silico and experimental evidence. Here, we combine data from both approaches and consider the gamut of possible protein complex compositional changes that arise during evolution, citing examples of complete conservation to partial and total replacement by functional analogues. We focus in part on complexes in trypanosomes as they represent one of the better studied non-animal/non-fungal lineages, but extend insights across the eukaryotes by extensive comparative genomic analysis. We argue that gene loss plays an important role in diversification of protein complexes and hence enhancement of eukaryotic diversity.  相似文献   

15.
Apoptosis-inducing factor (AIF) and AIF-homologous mitochondrion-associated inducer of death (AMID) are both mitochondrial flavoproteins that trigger caspase-independent apoptosis. Phylogenetic analysis suggests that these two proteins evolutionarily diverge back from their common prokaryote ancestor. Compared with AIF, the proapoptotic nature of AMID and its mode of action are much less clarified. Here, we show that overexpression of yeast AMID homologue internal NADH dehydrogenase (NDI1), but not external NADH dehydrogenase (NDE1), can cause apoptosis-like cell death, and this effect can be repressed by increased respiration on glucose-limited media. This result indicates that the regulatory network of energy metabolism, in particular the cross-talk between mitochondria and the rest of the cell, is involved in Ndi1p-induced yeast cell apoptosis. The apoptotic effect of NDI1 overexpression is associated with increased production of reactive oxygen species (ROS) in mitochondria. In addition, NDI1 overexpression in sod2 background causes cell lethality in both fermentable and semifermentable media. Interruption of certain components in the electron transport chain can suppress the growth inhibition from Ndi1p overexpression. We finally show that disruption of NDI1 or NDE1 decreases ROS production and elongates the chronological life span of yeast, accompanied by the loss of survival fitness. Implication of these findings for Ndi1p-induced apoptosis is discussed.  相似文献   

16.
Background and Aim: Our previous study of Helicobacter pylori‐induced apoptosis showed the involvement of Bcl‐2 family proteins and cytochrome c release from mitochondria. Here, we examine the release of other factors from mitochondria, such as apoptosis‐inducing factor (AIF), and upstream events involving caspase‐8 and Bid. Methods: Human gastric adenocarcinoma (AGS) cells were incubated with a cagA‐positive H. pylori strain for 0, 3, 6, and 24 hours and either total protein or cytoplasmic, nuclear, and mitochondrial membrane fractions were collected. Results: Proteins were immunoblotted for AIF, Bid, polyadenosine ribose polymerase (PARP), caspase‐8, and β‐catenin. H. pylori activated caspase‐8, caused PARP cleavage, and attenuated mitochondrial membrane potential. A time‐dependent decrease in β‐catenin protein expression was detected in cytoplasmic and nuclear extracts, coupled with a decrease in β‐actin. An increase in the cytoplasmic pool of AIF was seen as early as 3 hours after H. pylori exposure, and a concomitant increase was seen in nuclear AIF levels up to 6 hours. A band corresponding to full‐length Bid was seen in both the cytoplasmic and the nuclear fractions of controls, but not after H. pylori exposure. Active AIF staining was markedly increased in gastric mucosa from infected persons, compared to uninfected controls. Conclusion: H. pylori might trigger apoptosis in AGS cells via interaction with death receptors in the plasma membrane, leading to the cleavage of procaspase‐8, release of cytochrome c and AIF from mitochondria, and activation of subsequent downstream apoptotic events, as reported previously for chlorophyllin. This is consistent with AIF activation that was found in the gastric mucosa of humans infected with H. pylori. Hence, the balance between apoptosis and proliferation in these cells may be altered in response to injury caused by H. pylori infection, leading to an increased risk of cancer.  相似文献   

17.
The lymphoid protein T-cell ubiquitin ligand (TULA)/suppressor of T-cell receptor signaling (Sts)-2 is associated with c-Cbl and ubiquitylated proteins and has been implicated in the regulation of signaling mediated by protein-tyrosine kinases. The results presented in this report indicate that TULA facilitates T-cell apoptosis independent of either T-cell receptor/CD3-mediated signaling or caspase activity. Mass spectrometry-based analysis of protein-protein interactions of TULA demonstrates that TULA binds to the apoptosis-inducing protein AIF, which has previously been shown to function as a key factor of caspase-independent apoptosis. Using RNA interference, we demonstrate that AIF is essential for the apoptotic effect of TULA. Analysis of the subcellular localization of TULA and AIF together with the functional analysis of TULA mutants is consistent with the idea that TULA enhances the apoptotic effect of AIF by facilitating the interactions of AIF with its apoptotic co-factors, which remain to be identified. Overall, our results shed new light on the biological functions of TULA, a recently discovered protein, describing its role as one of very few known functional interactors of AIF.  相似文献   

18.
The heterotrimeric G‐protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G‐protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G‐protein associates with heptahelical G‐protein‐coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G‐protein effectors and scaffold proteins, we screened a set of proteins from the G‐protein complex using two‐hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G‐protein interactome. Within this core, over half of the interactions comprising two‐thirds of the nodes were retested and validated as genuine in planta. Co‐expression analysis in combination with phenotyping of loss‐of‐function mutations in a set of core interactome genes revealed a novel role for G‐proteins in regulating cell wall modification.  相似文献   

19.
A novel protein molecular targeting system was created using a cytoplasmic face of a plasma membrane-targeting system in Saccharomyces cerevisiae. The technique involves a molecular display for the creation of a novel reaction site and interaction sites in the field of biotechnology. In a model system, a fluorescent protein was targeted as a reporter to the cytoplasmic face of the plasma membrane. The C-terminal transmembrane domain (CTM) of Ras2p and Snc2p was examined as the portions with anchoring ability to the cytoplasmic face of the plasma membrane. We found that the CTM of Snc2p targeted the enhanced cyan fluorescent protein (ECFP)–protein A fusion protein on the cytoplasmic face of the plasma membrane more strongly than that of Ras2p. To develop it for use as a detection system for protein–protein interactions, the Fc fragment of IgG (Fc) was genetically fused with the enhanced yellow fluorescent protein (EYFP) and expressed in the cytoplasm of the ECFP–protein A-anchored cell. A microscopic analysis showed that fluorescence resonance energy transfer (FRET) between ECFP–protein A and EYFP–Fc occurred, and the change in fluorescence was observed on the cytoplasmic face of the plasma membrane. The detection of protein–protein interactions at the cytoplasmic face of a plasma membrane using FRET combined with a cytoplasmic face-targeting system for proteins provides a novel method for examining the molecular interactions of cytoplasmic proteins, in addition to conventional methods, such as the two-hybrid method in the nuclei. S. Shibasaki and K. Kuroda equally contributed to this work  相似文献   

20.
Mitochondria are 'life-essential' organelles for the production of metabolic energy in the form of ATP. Paradoxically mitochondria also play a key role in controlling the pathways that lead to cell death. This latter role of mitochondria is more than just a 'loss of function' resulting in an energy deficit but is an active process involving different mitochondrial proteins. Cytochrome c was the first characterised mitochondrial factor shown to be released from the mitochondrial intermembrane space and to be actively implicated in apoptotic cell death. Since then, other mitochondrial proteins, such as AIF, Smac/DIABLO, endonuclease G and Omi/HtrA2, were found to undergo release during apoptosis and have been implicated in various aspects of the cell death process. Members of the Bcl-2 protein family control the integrity and response of mitochondria to apoptotic signals. The molecular mechanism by which mitochondrial intermembrane space proteins are released and the regulation of mitochondrial homeostasis by Bcl-2 proteins is still elusive. This review summarises and evaluates the current knowledge concerning the complex role of released mitochondrial proteins in the apoptotic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号