首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain a whole genome library that suppresses the total diversity of human mRNAs, lentiviral vector constructs and a short hairpin RNA (shRNA) expression cassette were optimized. The optimization of the vector increased the virus titer in preparations by 15–20 times. A simple shRNA structure with a 21-bp stem proved to be the most effective. Lentivector-based shRNA expression constructs were obtained by using puro R, copGFP, or H-2K k as a selectable marker. The efficiency of the optimized library was demonstrated when screening for shRNAs reactivating the tumor suppressor p53 in HeLa cells. Cells carried a reporter construct ensuring p53-responsive synthesis of a fluorescent protein, which allowed selection of cells with reactivated p53 by flow cytometry.  相似文献   

2.
3.
4.
The RNA interference (RNAi) technique has been widely used in gene function studies. It is typical to screen for effective siRNAs by knocking down targeted genes since a single gene can be suppressed by several siRNAs to varying degrees. The miRNA-based short hairpin RNA (shRNA) is a natural inducer of RNAi and has been used in siRNA expression strategies. We investigated the potential application of multiple putative microRNA-based shRNAs for gene silencing and studied the inhibition efficiency of exogenous GFP and firefly luciferase (luc) by triple human mir155-based shRNA expression vectors. A total of three candidate siRNA sequences targeted against GFP or luc were selected based on an online prediction program. Single and triple miRNA-155-based shRNAs targeted against GFP or luc were transfected into HEK293 cells mediated by the pcDNA3 vector with an RNA polymerase II-type CMV (cytomegalovirus) promoter. Comparisons with negative control shRNAs revealed that GFP levels were markedly reduced by the triple miRNA-155-based GFP shRNA by fluorescent microscopy. Consistent results from the dual luciferase assay and real-time quantitative RT-PCR revealed that the triple miRNA-155-based GFP shRNA significantly suppressed GFP expression (P < 0.01), without significant differences from the most effective single miRNA-155-based GFP shRNA (P > 0.05). Results from the dual luciferase assay and real-time quantitative RT-PCR revealed that the triple miRNA-155-based luc shRNA significantly suppressed luc expression as the most effective single miRNA-155-based luc shRNA (P < 0.05). These studies demonstrated the gene silencing efficiency mediated by the triple putative miRNA-155-based shRNAs. This suggested that multiple miRNA-based shRNAs are quick and valuable strategies for gene silencing.  相似文献   

5.
Utilization of RNA interference (RNAi) for knockdown of gene expression has become a standard tool for the study of gene function. Short hairpin RNAs (shRNAs) expressed from RNA polymerase III promoters are widely used to achieve stable knockdown of gene expression by RNAi. We have constructed a retroviral-based shRNA expression vector, pSiRPG, as a tool for shRNA-based functional genomic studies. This vector is based on a widely used shRNA expression system and was modified to harbor an enhanced green fluorescent protein (EGFP) and a puromycin selection marker. The functionality of the elements in the pSiRPG vector was validated. The H1(TetO2) promoter in the vector facilitates doxycycline-inducible shRNA expression, which was demonstrated in cells expressing the Tet repressor (TetR). However, we also demonstrated limited efficiency of the inhibition of shRNA expression in an uninduced TetR-expressing cell line. This observation strongly indicates that the H1(TetO2) promoter, which is used in a wide range of vectors, is not optimal for tightly regulated shRNA expression. Stable repression of the NDRG1 protein level was observed when introducing pSiRPG constructs expressing shRNAs targeting NDRG1 into two mammary epithelial cell lines by retroviral delivery. This vector should therefore facilitate functional studies in breast cell lines that are hard to transfect with conventional plasmid-based methods.  相似文献   

6.
Berlivet S  Guiraud V  Houlard M  Gérard M 《BioTechniques》2007,42(6):738, 740-738, 743
RNA interference (RNAi) is a powerful method to generate loss-of-function phenotypes. Plasmid vectors with RNA polymerase III promoters have been developed to express short hairpin RNAs (shRNAs) in mammalian cells. In order to optimize the efficiency of these vectors in embryonic stem (ES) cells, we have constructed and tested several plasmids, based on the H1 promoter; that direct the expression of shRNAs. The original pSUPER vector was used as a reference in this study. This vector drives the expression of shRNAs from a basic 0.2-kb H1 promoter; which exhibits a variable expression when integrated into the genome of ES cells. We used a 2.5-kb mouse genomic fragment containing the H1 promoter to construct a new H1 shRNA vector pHYPER. A comparison of this vector with the basic 0.2-kb H1 vector showed that pHYPER directs the synthesis of higher amounts of shRNAs. Using epifluorescence and fluorescent-activated cell sorting (FACS) analysis, we demonstrated that pHYPER is 4-fold more active than the 0.2-kb H1-based vector after integration into the genome of mouse ES cells. We provide a new, improved H1 shRNA vector that is optimized for both transient transfection studies and the generation of stable ES cell lines.  相似文献   

7.
Down-regulation of the HIV-1 coreceptor CCR5 holds significant potential for long-term protection against HIV-1 in patients. Using the humanized bone marrow/liver/thymus (hu-BLT) mouse model which allows investigation of human hematopoietic stem/progenitor cell (HSPC) transplant and immune system reconstitution as well as HIV-1 infection, we previously demonstrated stable inhibition of CCR5 expression in systemic lymphoid tissues via transplantation of HSPCs genetically modified by lentiviral vector transduction to express short hairpin RNA (shRNA). However, CCR5 down-regulation will not be effective against existing CXCR4-tropic HIV-1 and emergence of resistant viral strains. As such, combination approaches targeting additional steps in the virus lifecycle are required. We screened a panel of previously published shRNAs targeting highly conserved regions and identified a potent shRNA targeting the R-region of the HIV-1 long terminal repeat (LTR). Here, we report that human CD4+ T-cells derived from transplanted HSPC engineered to co-express shRNAs targeting CCR5 and HIV-1 LTR are resistant to CCR5- and CXCR4- tropic HIV-1-mediated depletion in vivo. Transduction with the combination vector suppressed CXCR4- and CCR5- tropic viral replication in cell lines and peripheral blood mononuclear cells in vitro. No obvious cytotoxicity or interferon response was observed. Transplantation of combination vector-transduced HSPC into hu-BLT mice resulted in efficient engraftment and subsequent stable gene marking and CCR5 down-regulation in human CD4+ T-cells within peripheral blood and systemic lymphoid tissues, including gut-associated lymphoid tissue, a major site of robust viral replication, for over twelve weeks. CXCR4- and CCR5- tropic HIV-1 infection was effectively inhibited in hu-BLT mouse spleen-derived human CD4+ T-cells ex vivo. Furthermore, levels of gene-marked CD4+ T-cells in peripheral blood increased despite systemic infection with either CXCR4- or CCR5- tropic HIV-1 in vivo. These results demonstrate that transplantation of HSPCs engineered with our combination shRNA vector may be a potential therapy against HIV disease.  相似文献   

8.
RNAi has potential for therapeutically downregulating the expression of dominantly inherited genes in a variety of human genetic disorders. Here we used the ROSA26 mouse, which constitutively expresses the bacterial lacZ gene in tissues body wide, as a model to test the ability to downregulate gene expression in striated muscles. Recombinant adeno-associated viral vectors (rAAVs) were generated that express short hairpin RNAs (shRNAs) able to target the lacZ mRNA. Systemic delivery of these rAAV6 vectors led to a decrease of β-galactosidase expression of 30–50-fold in the striated muscles of ROSA26 mice. However, high doses of vectors expressing 21 nucleotide shRNA sequences were associated with significant toxicity in both liver and cardiac muscle. This toxicity was reduced in cardiac muscle using lower vector doses. Furthermore, improved knockdown in the absence of toxicity was obtained by using a shorter (19 nucleotide) shRNA guide sequence. These results support the possibility of using rAAV vectors to deliver RNAi sequences systemically to treat dominantly inherited disorders of striated muscle.  相似文献   

9.
MicroRNA-based short hairpin RNAs (shRNAs) are natural inducers of RNA interference and have been increasingly used in shRNA expression strategies. In the present study, we compared the efficiencies of exogenous green fluorescence protein (GFP) and endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) knockdown and red fluorescent protein (RFP) indicator expression mediated by three differently designed plasmids. RFP was introduced either at the 5′ end, at the 3′ end of the human mir155-based target gene (TG) (e.g., GFP or GAPDH) shRNA expression cassette (EC), or at the 3′ end of the chimeric intron-containing TG shRNA EC. Comparisons with the control vector showed an obvious reduction of GFP or GAPDH expression with the various shRNA expression plasmids (P < 0.05). When RFP was located at the 5′ end or at the 3′ end of the TG shRNA EC, RFP expression was low; whereas when RFP was connected with the chimeric intron-containing TG shRNA EC, RFP expression was high. Taken together, this study demonstrated an efficient plasmid design for both TG silencing induced by microRNA-based shRNA and indicator gene expression in vitro.  相似文献   

10.

Background

RNA interference (RNAi) is a robust tool for inhibiting specific gene expression, but it is limited by the uncertain efficiency of siRNA or shRNA constructs. It has been shown that the overexpression of ARGONAUTE 2 (AGO2) protein increases silencing efficiency. However, the key elements required for AGO2-mediated enhancement of gene silencing in lentiviral vector has not been well studied.

Results

To explore the application of AGO2-based shRNA system in mammalian cells, we designed shRNA vectors targeting the EGFP reporter gene and evaluated the effects of various factors on silencing efficiency including stem length, loop sequence, antisense location as well as the ratio between AGO2 and shRNA. We found that 19 ~ 21-bp stem and 6- or 9-nt loop structure in the sense-loop-antisense (S-L-AS) orientation was an optimal design in the AGO2-shRNA system. Then, we constructed a single lentiviral vector co-expressing shRNA and AGO2 and demonstrated that the simultaneous expression of shRNA and AGO2 can achieve robust silencing of exogenous DsRed2 and endogenous ID1 and P65 genes. However, the titers of packaged lentivirus from constitutive expression of AGO2 vector were extremely low, severely limiting its broad application. For the first time, we demonstrated that the problem can be significantly improved by using the inducible expression of AGO2 lentiviral system.

Conclusions

We reported a novel lentiviral vector with an optimal design of shRNA and inducible AGO2 overexpression which provides a new tool for RNAi research.
  相似文献   

11.

Background

Multiple short hairpin RNA (shRNA) gene therapy strategies are currently being investigated for treating viral diseases such as HIV-1. It is important to use several different shRNAs to prevent the emergence of treatment-resistant strains. However, there is evidence that repeated expression cassettes delivered via lentiviral vectors may be subject to recombination-mediated repeat deletion of 1 or more cassettes.

Results

The aim of this study was to determine the frequency of deletion for 2 to 6 repeated shRNA cassettes and mathematically model the outcomes of different frequencies of deletion in gene therapy scenarios. We created 500+ clonal cell lines and found deletion frequencies ranging from 2 to 36% for most combinations. While the central positions were the most frequently deleted, there was no obvious correlation between the frequency or extent of deletion and the number of cassettes per combination. We modeled the progression of infection using combinations of 6 shRNAs with varying degrees of deletion. Ourin silico modeling indicated that if at least half of the transduced cells retained 4 or more shRNAs, the percentage of cells harboring multiple-shRNA resistant viral strains could be suppressed to < 0.1% after 13 years. This scenario afforded a similar protection to all transduced cells containing the full complement of 6 shRNAs.

Conclusion

Deletion of repeated expression cassettes within lentiviral vectors of up to 6 shRNAs can be significant. However, our modeling showed that the deletion frequencies observed here for 6× shRNA combinations was low enough that thein vivo suppression of replication and escape mutants will likely still be effective.  相似文献   

12.
The effect of RNA interference (RNAi) is generally more potent in Drosophila Schneider 2 (S2) cells than in mammalian cells. In mammalian cells, PolIII promoter-based DNA vectors can be used to express small interfering RNA (siRNA) or short hairpin RNA (shRNA); however, this has not been demonstrated in cultured Drosophila cells. Here we show that shRNAs transcribed from the Drosophila U6 promoter can efficiently trigger gene silencing in S2 cells. By targeting firefly luciferase mRNA, we assessed the efficacy of the shRNAs and examined the structural requirements for highly effective shRNAs. The silencing effect was dependent on the length of the stem region and the sequence of the loop region. Furthermore, we demonstrate that the expression of the endogenous cyclin E protein can be repressed by the U6 promoter-driven shRNAs. Drosophila U6 promoter-based shRNA expression systems may permit stable gene silencing in S2 cells.  相似文献   

13.
RNA interference (RNAi) mediates gene silencing in many eukaryotes and has been widely used to investigate gene functions. A common method to induce sustained RNAi is introducing plasmids that synthesize short hairpin RNAs (shRNAs) using Pol III promoters. While these promoters synthesize shRNAs and elicit RNAi efficiently, they lack cell specificity. Monitoring shRNA expression levels in individual cells by Pol III promoters is also difficult. An alternative way to deliver RNAi is to use Pol II-directed synthesis of shRNA. Previous efforts in developing a Pol II system have been sparse and the results were conflicting, and the usefulness of those Pol II vectors has been limited due to low efficacy. Here we demonstrate a new Pol II system that directs efficient shRNA synthesis and mediates strong RNAi at levels that are comparable with the commonly used Pol III systems. In addition, this system synthesizes a marker protein under control of the same promoter as the shRNA, thus providing an unequivocal indicator, not only to the cells that express the shRNA, but also to the levels of the shRNA expression. This system may be adapted for in vivo shRNA expression and gene silencing.  相似文献   

14.
Lentiviral vectors that carry anti-HIV shRNAs: problems and solutions   总被引:3,自引:0,他引:3  
BACKGROUND: HIV-1 replication can be inhibited with RNA interference (RNAi) by expression of short hairpin RNA (shRNA) from a lentiviral vector. Because lentiviral vectors are based on HIV-1, viral sequences in the vector system are potential targets for the antiviral shRNAs. Here, we investigated all possible routes by which shRNAs can target the lentiviral vector system. METHODS: Expression cassettes for validated shRNAs with targets within HIV-1 Leader, Gag-Pol, Tat/Rev and Nef sequences were inserted in the lentiviral vector genome. Third-generation self-inactivating HIV-1-based lentiviral vectors were produced and lentiviral vector capsid production and transduction titer determined. RESULTS: RNAi against HIV-1 sequences within the vector backbone results in a reduced transduction titer while capsid production was unaffected. The notable exception is self-targeting of the shRNA encoding sequence, which does not affect transduction titer. This is due to folding of the stable shRNA hairpin structure, which masks the target for the RNAi machinery. Targeting of Gag-Pol mRNA reduces both capsid production and transduction titer, which was improved with a human codon-optimized Gag-Pol construct. When Rev mRNA was targeted, no reduction in capsid production and transduction titer was observed. CONCLUSIONS: Lentiviral vector titers can be negatively affected when shRNAs against the vector backbone and the Gag-Pol mRNA are expressed during lentiviral vector production. Titer reductions due to targeting of the Gag-Pol mRNA can be avoided with a human codon-optimized Gag-Pol packaging plasmid. The remaining targets in the vector backbone may be modified by point mutations to resist RNAi-mediated degradation during vector production.  相似文献   

15.
Defining the optimal parameters for hairpin-based knockdown constructs   总被引:3,自引:1,他引:2  
Li L  Lin X  Khvorova A  Fesik SW  Shen Y 《RNA (New York, N.Y.)》2007,13(10):1765-1774
Induction of gene silencing using intracellularly expressed silencing triggers has been explored for large-scale loss-of-function screening, creation of knockdown cell lines or knockdown animals, and disease intervention. In all of these applications, the use of highly potent silencing constructs can maximize the possibility of obtaining target knockdown and thereby is intrinsically important for the chance of success. Several attempts have been made to improve the potency of a silencing construct. Results published in high profile journals such as Nature Biotechnology and Nature Genetics suggest that shRNAs with a 29-nucleotide (nt) stem is much more potent than shRNAs with a 19-nt stem, and miR30-based silencing constructs are much more potent than shRNA-based constructs. In this study, we systematically investigated several parameters, including the use of shRNA- or miR30-based scaffolds, the length of shRNA, and the selection of shRNA sequences for their impact on the knockdown efficiency of a silencing construct. Our studies revealed that the optimal configurations for a potent silencing trigger could be an shRNA with a 19-nt stem and a 9-nt loop. By comparing properties that favor the functional shRNAs and siRNAs using a set of 190 shRNAs against 19 targets and 360 siRNAs against four targets, we found that the functional shRNAs and siRNAs displayed similar but not identical nucleotide preferences. Based on the characteristic nucleotide preferences in the functional versus the nonfunctional shRNAs, we developed a computer program that outperforms an advanced siRNA selection algorithm for the enrichment of highly functional shRNAs.  相似文献   

16.
17.
Artificial microRNA (amiRNA) technology has been applied in Arabidopsis thaliana and other plants to efficiently silence target genes of interest. Here we described a novel approach to construct plant amiRNA expression vectors with seamless enzyme-free cloning (SEFC) and mating-assisted genetically integrated cloning (MAGIC). Two pairs of primers were designed when the loop of amiRNA precursor was longer than 60 bp while three oligonucleotides were used to amplify the linearized vector containing the amiRNA precursor whose loop was smaller than 60 bp. The PCR products were transformed into Escherichia coli to generate the donor plasmid containing the amiRNA expression cassette through homologous recombination in vivo. The amiRNA expression cassette was then transferred to the recipient plasmid via MAGIC and an amiRNA expression plasmid was created. More than 200 amiRNA expression vectors were generated with this approach, three of which have been transformed into A. thaliana and successfully silence the target genes. Given its low-cost and simplicity, this novel approach of plant amiRNA expression vectors construction will benefit the study of individual gene function and establishment of plant amiRNA libraries.  相似文献   

18.
Aim: To construct short hairpin RNAs (shRNAs) and miR30-based shRNAs against heparanase (HPSE) to compare their safety and their effects on HPSE down-modulation in vitro and in vivo to develop a more ideal therapeutic RNA interference (RNAi) vector targeting HPSE.Methods: First, we constructed shRNAs and miR30-based shRNAs against HPSE (HPSE-shRNAs and HPSE-miRNAs) and packed them into lentiviral vectors. Next, we observed the effects of the shRNAs on knockdown for HPSE expression, adhesion, migration and invasion abilities in human malignant melanoma A375 cells in vitro. Furthermore, we compared the effects of the shRNAs on melanoma growth, metastasis and safety in xenograft models.Results: Our data showed that these artificial miRNAs targeting HPSE could be effective RNAi agents mediated by Pol II promoters in vitro and in vivo, although these miRNAs were not more potent than the HPSE-shRNAs. It was noted that obvious lung injuries, rarely revealed previously, as well as hepatotoxicity could be caused by lentivirus-mediated shRNAs (LV shRNAs) rather than lentivirus-mediated miRNAs (LV miRNAs) in vivo. Furthermore, enhanced expression of pro-inflammatory cytokines IL-6 and TGF-β1 and endogenous mmu-miR-21a-5p were detected in lung tissues of shRNAs groups, whereas the expression of mmu-let-7a-5p, mmu-let-7b-5p and mmu-let-7c-5p were down-regulated.Conclusion: These findings suggest that artificial miRNAs display an improved safety profile of lowered lung injury or hepatotoxicity relative to shRNAs in vivo. The mechanism of lung injuries caused by shRNAs may be correlated with changes of endogenous miRNAs in the lung. Our data here increase the flexibility of a miRNA-based RNAi system for functional genomic and gene therapy applications.  相似文献   

19.
RNA interference with viral vectors that express short hairpin RNAs (shRNAs) has emerged as a powerful tool for functional genomics and therapeutic purposes. However, little is known about shRNA in vivo processing, accumulation, functional kinetics, and side effects related to shRNA saturation of the cellular gene silencing machinery. Therefore, we constructed first-generation recombinant adenoviruses encoding different shRNAs against murine ATP-binding cassette multidrug resistance protein 2 (Abcc2), which is involved in liver transport of bilirubin to bile, and analyzed Abcc2 silencing kinetics. C57/BL6 mice injected with these viruses showed significant impairment of Abcc2 function for up to 3 weeks, as reflected by increased serum bilirubin levels. The lack of Abcc2 function correlated with a specific reduction of Abcc2 mRNA and with high levels of processed shRNAs targeting Abcc2. Inhibition was lost at longer times postinfection, correlating with a decrease in the accumulation of processed shRNAs. This finding suggests that a minimal amount of processed shRNAs is required for efficient silencing in vivo. This system was also used to evaluate the effect of shRNA expression on the saturation of silencing factors. Saturation of the cellular silencing processing machinery alters the accumulation and functionality of endogenous microRNAs (miRNAs) and pre-miRNAs. However, expression of functional exogenous shRNAs did not change the levels of endogenous miRNAs or their precursors. In summary, this work shows that adenoviral vectors can deliver sufficient shRNAs to mediate inhibition of gene expression without saturating the silencing machinery.  相似文献   

20.

Background

RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs to mediate sequence‐specific gene silencing by cleavage of the targeted mRNA. RNAi can be used as an antiviral approach to silence the human immunodeficiency virus type 1 (HIV‐1) through stable expression of short hairpin RNAs (shRNAs). Previously, we used a co‐transfection assay in which shRNA constructs were transfected with an HIV‐1 molecular clone to identify 20 shRNA inhibitors that target highly conserved HIV‐1 sequences.

Methods

In the present study, we selected the most potent shRNAs to formulate a combinatorial shRNA therapy and determine the best and easiest method for antiviral shRNA selection. We performed transient inhibition assays with either a luciferase reporter or HIV‐1 molecular clone and also infected shRNA‐expressing T cell lines with HIV‐1 and monitored virus replication. The latter assay allows detection of viral escape. In addition, we also tested shRNA‐expressing T cells upon challenge with increasing dosages of HIV‐1, and measured the dose required to result in massive virus‐induced syncytia formation in this 2‐week assay.

Results

Extended culturing selected three highly effective shRNAs that do not allow viral replication for more than 100 days. This difference in potency was not observed in the transient co‐transfection assays. The use of increased dosages of HIV‐1 selected the same highly potent shRNAs as the laborious and extended escape study.

Conclusions

These highly potent shRNAs could be used for a clinical vector and the comparison of the developed assays might help other researchers in their search for antiviral shRNAs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号