首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion.

Methodology/Principal Findings

We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site.

Conclusion

Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPG-mediated regenerative failure after SCI.  相似文献   

2.
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.  相似文献   

3.
Background aimsIn this study we investigated the effect of neurotrophin-3 (NT-3) and knockdown of NG2, one of the main inhibitory chondroitin sulfate proteoglycans (CSPG), in the glial scar following spinal cord injury (SCI).MethodsShort hairpin (sh) RNA were designed to target NG2 and were cloned into a lentiviral vector (LV). A LV was also constructed containing NT-3. LV expressing NT-3, shRNA to NG2 or combinations of both vectors were injected directly into contused rat spinal cords 1 week post-injury. Six weeks post-injection of LV, spinal cords were examined by histology for changes in scar size and by immunohistochemistry for changes in expression of CSPG, NT-3, astrocytes, neurons and microglia/macrophages. Motor function was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor scale.ResultsAnimals that received the combination treatment of LV shNG2 and LV NT-3 showed reduced scar size. These animals also showed an increase in levels of neurons and NG2, a decrease in levels of astrocytes and a significant functional recovery as assessed using the BBB locomotor scale at 2 weeks post-treatment.ConclusionsThe improvement in locomotor recovery and decrease in scar size shows the potential of this gene therapy approach as a therapeutic treatment for SCI.  相似文献   

4.
Spinal cord injury (SCI) results in cell death and tissue destruction, and ultimately cavitation followed by the formation of lesion scars at the injury site. The lesion scars include an astrocytic component (glial scar) and a fibroblastic component (connective tissue scar). The purpose of the present study is to determine if X-irradiation could minimize the formation of lesion scars and reduce the levels of chondroitin sulfate proteoglycans (CSPGs) in the contusion SCI model of the adult rat. Two weeks after SCI, a connective tissue scar formed at the injury site consisting primarily of fibroblasts and exhibits strong CSPG immunoreactivity. The fibroblasts might originate from the connective tissue of pia mater or arachnoid mater. At the same time, reactive astrocytes in the spared tissue accumulate surrounding the lesion cavity to form a thick glial scar with significant enhancement of glial fibrillary acidic protein (GFAP) and CSPG immunoreactivity. After X-irradiation (40 Gy) of the injury site 2 days post-injury, that results in an attenuated dose to the lesion, the connective tissue scar was not observed, and accordingly, almost no CSPG immunoreactivity was detected at this area. Meanwhile, the glial scar and its CSPG immunoreactivity were prominently reduced. X-irradiation did not show significant improvement in locomotor recovery, but resulted in a slight delay of body weight recovery following injury. This preparative treatment could be used to reduce secondary scarring in the lesion resulting in an enriched site for further treatment such as growth related transplantation.  相似文献   

5.
Methylprednisolone (MP) has been widely used as a standard therapeutic agent for the treatment of spinal cord injury (SCI). Because of its controversial beneficial effects, the combination of MP and other pharmacological agents aimed at enhancing functional recovery is desirable. The phosphodiesterase 4 (PDE4) inhibitor rolipram has been implicated in promotion of regeneration due to elevating cAMP. In the present study, we sought to determine the effects of MP and rolipram, administered in combination, after spinal cord injury (SCI) in adult rats. Here we show that in vitro administration of rolipram and MP significantly increased neuron survival and promoted neurite outgrowth of neurons on the inhibitory substrate CSPGs by upregulation of MMP-2 expression; in vivo administration of rolipram and MP inhibited CSPG expression and increase CSPG digestion after rat SCI. Rolipram and MP combining treatment promoted significant neuroprotection through reduced motoneuron death, minimized lesion cavity, and increased regeneration of lesioned corticospinal tract (CST) axons beyond the lesion site after SCI. Enhanced functional recovery was also observed. Overall, our study strongly suggested that the combination treatment of MP and rolipram may represent a promising strategy for clinically applicable pharmacological therapy for rapid initiation of neuroprotection after SCI.  相似文献   

6.
Chondroitin sulfate proteoglycans (CSPGs) are glial scar-associated molecules considered axonal regeneration inhibitors and can be digested by chondroitinase ABC (ChABC) to promote axonal regeneration after spinal cord injury (SCI). We previously demonstrated that intrathecal delivery of low-dose ChABC (1 U) in the acute stage of SCI promoted axonal regrowth and functional recovery. In this study, high-dose ChABC (50 U) introduced via intrathecal delivery induced subarachnoid hemorrhage and death within 48 h. However, most SCI patients are treated in the sub-acute or chronic stages, when the dense glial scar has formed and is minimally digested by intrathecal delivery of ChABC at the injury site. The present study investigated whether intraparenchymal delivery of ChABC in the sub-acute stage of complete spinal cord transection would promote axonal outgrowth and improve functional recovery. We observed no functional recovery following the low-dose ChABC (1 U or 5 U) treatments. Furthermore, animals treated with high-dose ChABC (50 U or 100 U) showed decreased CSPGs levels. The extent and area of the lesion were also dramatically decreased after ChABC treatment. The outgrowth of the regenerating axons was significantly increased, and some partially crossed the lesion site in the ChABC-treated groups. In addition, retrograde Fluoro-Gold (FG) labeling showed that the outgrowing axons could cross the lesion site and reach several brain stem nuclei involved in sensory and motor functions. The Basso, Beattie and Bresnahan (BBB) open field locomotor scores revealed that the ChABC treatment significantly improved functional recovery compared to the control group at eight weeks after treatment. Our study demonstrates that high-dose ChABC treatment in the sub-acute stage of SCI effectively improves glial scar digestion by reducing the lesion size and increasing axonal regrowth to the related functional nuclei, which promotes locomotor recovery. Thus, our results will aid in the treatment of spinal cord injury.  相似文献   

7.

Background

After spinal cord injury (SCI), the formation of glial scar contributes to the failure of injured adult axons to regenerate past the lesion. Increasing evidence indicates that olfactory ensheathing cells (OECs) implanted into spinal cord are found to migrate into the lesion site and induce axons regeneration beyond glial scar and resumption of functions. However, little is known about the mechanisms of OECs migrating from injection site to glial scar/lesion site.

Methods and Findings

In the present study, we identified a link between OECs migration and reactive astrocytes in glial scar that was mediated by the tumor necrosis factor-α (TNF-α). Initially, the Boyden chamber migration assay showed that both glial scar tissue and reactive astrocyte-conditioned medium promoted OECs migration in vitro. Reactive astrocyte-derived TNF-α and its type 1 receptor TNFR1 expressed on OECs were identified to be responsible for the promoting effect on OECs migration. TNF-α-induced OECs migration was demonstrated depending on activation of the extracellular signal-regulated kinase (ERK) signaling cascades. Furthermore, TNF-α secreted by reactive astrocytes in glial scar was also showed to attract OECs migration in a spinal cord hemisection injury model of rat.

Conclusions

These findings showed that TNF-α was released by reactive astrocytes in glial scar and attracted OECs migration by interacting with TNFR1 expressed on OECs via regulation of ERK signaling. This migration-attracting effect of reactive astrocytes on OECs may suggest a mechanism for guiding OECs migration into glial scar, which is crucial for OECs-mediated axons regrowth beyond the spinal cord lesion site.  相似文献   

8.

Background

Chondroitin sulfate proteoglycan (CSPG) is a major component of the glial scar. It is considered to be a major obstacle for central nervous system (CNS) recovery after injury, especially in light of its well-known activity in limiting axonal growth. Therefore, its degradation has become a key therapeutic goal in the field of CNS regeneration. Yet, the abundant de novo synthesis of CSPG in response to CNS injury is puzzling. This apparent dichotomy led us to hypothesize that CSPG plays a beneficial role in the repair process, which might have been previously overlooked because of nonoptimal regulation of its levels. This hypothesis is tested in the present study.

Methods and Findings

We inflicted spinal cord injury in adult mice and examined the effects of CSPG on the recovery process. We used xyloside to inhibit CSPG formation at different time points after the injury and analyzed the phenotype acquired by the microglia/macrophages in the lesion site. To distinguish between the resident microglia and infiltrating monocytes, we used chimeric mice whose bone marrow-derived myeloid cells expressed GFP. We found that CSPG plays a key role during the acute recovery stage after spinal cord injury in mice. Inhibition of CSPG synthesis immediately after injury impaired functional motor recovery and increased tissue loss. Using the chimeric mice we found that the immediate inhibition of CSPG production caused a dramatic effect on the spatial organization of the infiltrating myeloid cells around the lesion site, decreased insulin-like growth factor 1 (IGF-1) production by microglia/macrophages, and increased tumor necrosis factor alpha (TNF-α) levels. In contrast, delayed inhibition, allowing CSPG synthesis during the first 2 d following injury, with subsequent inhibition, improved recovery. Using in vitro studies, we showed that CSPG directly activated microglia/macrophages via the CD44 receptor and modulated neurotrophic factor secretion by these cells.

Conclusions

Our results show that CSPG plays a pivotal role in the repair of injured spinal cord and in the recovery of motor function during the acute phase after the injury; CSPG spatially and temporally controls activity of infiltrating blood-borne monocytes and resident microglia. The distinction made in this study between the beneficial role of CSPG during the acute stage and its deleterious effect at later stages emphasizes the need to retain the endogenous potential of this molecule in repair by controlling its levels at different stages of post-injury repair.  相似文献   

9.
Traumatic injury to the CNS results in increased expression and deposition of chondroitin sulfate proteoglycans (CSPGs) that are inhibitory to axonal regeneration. Transforming growth factor-β (TGF-β) has been implicated as a major mediator of these changes, but the mechanisms through which TGF-β regulates CSPG expression are not known. Using lentiviral expressed Smad-specific ShRNA we show that TGF-β induction of CSPG expression in astrocytes is Smad-dependent. However, we find a differential dependence of the synthetic machinery on Smad2 and/or Smad3. TGF-β induction of neurocan and xylosyl transferase 1 required both Smad2 and Smad3, whereas induction of phosphacan and chondroitin synthase 1 required Smad2 but not Smad3. Smad3 knockdown selectively reduced induction of chondroitin-4-sulfotransferase 1 and the amount of 4-sulfated CSPGs secreted by astrocytes. Additionally, Smad3 knockdown in astrocytes was more efficacious in promoting neurite outgrowth of neurons cultured on the TGF-β-treated astrocytes. Our data implicate TGF-β Smad3-mediated induction of 4-sulfation as a critical determinant of the permissiveness of astrocyte secreted CSPGs for axonal growth.  相似文献   

10.
Chondroitin sulphate proteoglycans (CSPGs) with the major component NG2 have an inhibitory effect on regeneration of damaged axons after spinal cord injury. In this study, we investigate whether the digestion of CSPGs by chondroitinase ABC (ChABC) may decrease the NG2 expression and promote axon regrowth through the lesion site. Rats underwent spinal cord compression injury and were treated with ChABC or vehicle through an intrathecal catheter delivery at 2, 3, and 4 days after injury. In addition, animals were behaviorally scored using BBB test in weekly intervals after SCI. Based on immunocytochemical analyses, we have quantified distribution of NG2 glycoprotein and GAP-43 in spinal cord tissue in both experimental groups. Multiple injections of ChABC caused decrease of NG2 expression at lesion site at 5 and 7 days, but not at 14 and 28 days in comparison with vehicle-treated rats and significantly enhanced GAP-43 expression during the entire survival. The densitometry analysis showed significantly higher GAP-43 immunoreactivity (1.8–2.2-fold) in the regrowing axons and cell bodies within the central lesion cavity when compared with vehicle group. Longitudinally oriented and disorganized GAP-43-labeled axons were able to infiltrate and penetrate damaged tissue. The outgrowth of GAP-43 axons after CHABC delivery was significantly longer (≤0.457 mm) when compared with the length of axons in vehicle-treated rats (≤0.046 mm). Present findings suggest that degradation of NG2 with acute IT ChABC treatment may promote ongoing (long-lasting) axonal regenerative processes at late survival (14 and 28 days), but with no significant impact on the improvement of motor function.  相似文献   

11.

Background

Chondroitin sulphate proteoglycan (NG2) expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4th commonest cell population of non-neuronal cell type in the central nervous system (CNS). They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neuropathogenesis and aimed to determine if NG2 cells could sense and response to the alterations in the axonal contents caused by disruption of neurofilament light subunit (NFL) expression.

Results

In the early neuropathological development stage, our study showed that the diameter of axons of upper motor neurons of NFL-/- mice decreased significantly while the thickness of their myelin sheath increased remarkably. Although there was an obvious morphological distortion in axons with occasionally partial demyelination, no obvious changes in expression of myelin proteins was detected. Parallel to these changes in the axons and their myelination, the processes of NG2 cells were disconnected from the nodes of Ranvier and extended further, suggesting that these cells in the spinal cord white matter could sense the alteration in axonal contents caused by disruption of NFL expression before astrocytic and microglial activation.

Conclusion

The structural configuration determined by the NFL gene may be important for maintenance of normal morphology of myelinated axons. The NG2 cells might serve as an early sensor for the delivery of information from impaired neurons to the local environment.  相似文献   

12.
13.
The formation of the glial scar following a spinal cord injury presents a significant barrier to the regenerative process. It is primarily composed of chondroitin sulfate proteoglycans (CSPGs) that can inhibit axonal sprouting and regeneration. Although the inhibitory effects on neurons are well documented, little is known about their effects on oligodendrocyte progenitor cells (OPCs). In this study, we examined the effects of CSPGs on OPC process outgrowth and differentiation in vitro. The results show that specific CSPGs, in particularly those highly up-regulated following spinal cord injury, inhibit OPC process outgrowth and differentiation, and that treatment with chondroitinase ABC can completely reverse this inhibition. Additionally, treatment with the Rho kinase inhibitor Y-27632 also reverses the observed inhibition, implicating the activation of Rho kinase in the CSPG inhibition of OPC growth. Taken together, these findings demonstrate that the CSPGs found within the glial scar are not only inhibitory to neurons, but also to OPCs. Moreover, this study shows that chondroitinase ABC treatment, having shown promise in promoting axonal regeneration, may also enhance remyelination.  相似文献   

14.
In the CSN including the spinal cord, NG2 proteoglycan is a marker of oligodendrocyte progenitors. To elucidate the dynamics of the endogenous neural stem (progenitor) cells in adult rats with spinal cord injury (SCI), we examined an immunohistochemical analysis of NG2, GFAP, and 3CB2, a specific marker of radial glia (RG). SD rats were divided into a SCI group (n = 25) and a sham-operated group (n = 5). In the injury group, laminectomy was performed at Th11–12 and contusive compression injury was created by applying a weight of 30 g for 10 min. Rats were sacrificed at 24 h, and 1, 4, 8 and 12 weeks post-injury. Frozen 20-μ m sections of tissue 5 and 10 mm rostral and caudal to the epicenter of injury were prepared. Immunohistochemistry was performed using antibodies against NG2, GFAP and 3CB2. At 4 weeks after injury, NG2-positive glial cells arose from below the pial surface as bipolar cells with processes extending throughout the entire white matter. NG2 expression peaked at 4 weeks after injury, showing a 7-fold increase compared to the 24 h after injury. The NG2-positive cells with processes which increased in the white matter of the spinal cord were GFAP-positive and also co-localized with 3CB2 antigen. The pattern of NG2 expression of these cells was temporally and spatially different from the pattern of NG2 expression that accumulated around the hemorrhagic and necrotic epicenter. These results suggest that NG2 positive cells which derived from subpial layer, may have some lineage to RG after SCI in adult rodents.  相似文献   

15.
After injury to the central nervous system, a glial scar develops that physically and biochemically inhibits axon growth. In the scar, activated astrocytes secrete inhibitory extracellular matrix, of which chondroitin sulfate proteoglycans (CSPGs) are considered the major inhibitory component. An inhibitory interface of CSPGs forms around the lesion and prevents axons from traversing the injury, and decreasing CSPGs can enhance axon growth. In this report, we established an in vitro interface model of activated astrocytes and subsequently investigated gene delivery as a means to reduce CSPG levels and enhance axon growth. In the model, a continuous interface of CSPG producing astrocytes was created with neurons seeded opposite the astrocytes, and neurite crossing, stopping, and turning were evaluated as they approached the interface. We investigated the efficacy of lentiviral delivery to degrade or prevent the synthesis of CSPGs, thereby removing CSPG inhibition of neurite growth. Lentiviral delivery of RNAi targeting two key CSPG synthesis enzymes, chondroitin polymerizing factor and chondroitin synthase‐1, decreased CSPGs, and reduced inhibition by the interface. Degradation of CSPGs by lentiviral delivery of chondroitinase also resulted in less inhibition and more neurites crossing the interface. These results indicate that the interface model provides a tool to investigate interventions that reduce inhibition by CSPGs, and that gene delivery can be effective in promoting neurite growth across an interface of CSPG producing astrocytes. Biotechnol. Bioeng. 2013; 110: 947–957. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
In spinal cord injury, the injury could trigger some inhibitory signal cascades to promote chondroitin sulfate proteoglycans (CSPGs), the structures of scar tissues, formation. CSPGs could limit axonal regeneration mainly through the glycosaminoglycan (GAG) chain in the lesion site were suggested. We hypothesized that the digestion of CSPGs by chondroitinase ABC (ChABC) might decrease the inhibitory effects of limiting axonal re-growth after spinal cord injury. We compared the digesting products of CSPGs such as 2B6 by ChABC with the untreated control group and found no immunostaining of 2B6 in control group. The smaller size scars of ChABC-treatment were observed via CS-56, a type of CSPGs, 8 weeks after transection by immunohistochemistry. The inhibitory effects of CSPGs withdraw GAGs following ChABC-treatment would reduce, and immunopositive GAP-43 newly outgrown fibers were identified. In the animal trials, ChABC-treatment could improve motor function through BBB locomotor's test and reduce limiting ability of scar tissues to promote axonal regeneration via changing the structure of CSPGs by immunohistochemistry with GAP-43.  相似文献   

17.
Atrophy of upper motor neurons hampers axonal regeneration and functional recovery following spinal cord injury (SCI). Apart from the severity of primary injury, a series of secondary pathological damages including spinal cord edema and glial scar formation affect the fate of injured upper motor neurons. The aquaporin-4 (AQP4) water channel plays a critical role in water homeostasis and migration of astrocytes in the central nervous system, probably offering a new therapeutic target for protecting against upper motor neuron degeneration after SCI. To test this hypothesis, we examined the effect of AQP4 deficiency on atrophy of rubrospinal neurons after unilateral rubrospinal tract transection at the fourth cervical level in mice. AQP4 gene knockout (AQP4?/?) mice exhibited high extent of spinal cord edema at 72 h after lesion compared with wild-type littermates. AQP4?/? mice showed impairments in astrocyte migration toward the transected site with a greater lesion volume at 1 week after surgery and glial scar formation with a larger cyst volume at 6 weeks. More severe atrophy and loss of axotomized rubrospinal neurons as well as axonal degeneration in the rubrospinal tract rostral to the lesion were observed in AQP4?/? mice at 6 weeks after SCI. AQP4 expression was downregulated at the lesioned spinal segment at 3 days and 1 week after injury, but upregulated at 6 weeks. These results demonstrated that AQP4 not only mitigates spinal cord damage but also ameliorates retrograde degeneration of rubrospinal neurons by promoting edema clearance and glial scar formation after laceration SCI. This finding supports the notion that AQP4 may be a promising therapeutic target for SCI.  相似文献   

18.
NG2(+) cells in the adult rat spinal cord proliferate after spinal cord injury (SCI) and are postulated to differentiate into mature glia to replace some of those lost to injury. To further study these putative endogenous precursors, tissue at 3 days after SCI or from uninjured adults was dissociated, myelin partially removed and replicate cultures grown in serum-containing or serum-free medium with or without growth factors for up to 7 days in vitro (DIV). Cell yield after SCI was 5-6 times higher than from the normal adult. Most cells were OX42(+) microglia/macrophages but there were also more than twice the normal number of NG2(+) cells. Most of these coexpressed A2B5 or nestin, as would be expected for glial progenitors. Few cells initially expressed mature astrocyte (GFAP) or oligodendrocyte (CC1) markers, but more did at 7 DIV, suggesting differentiation of glial precursors in vitro. To test the hypothesis that NG2(+) cells after SCI express progenitor-like properties, we prepared free-floating sphere and single cell cultures from purified suspension of NG2(+) cells from injured spinal cord. We found that sphere cultures could be passaged in free-floating subcultures, and upon attachment the spheres clonally derived from an acutely purified single cell differentiated into oligodendrocytes and rarely astrocytes. Taken together, these data support the hypothesis that SCI stimulates proliferation of NG2(+) cells that are glial progenitor cells. Better understanding the intrinsic properties of the NG2(+) cells stimulated by SCI may permit future therapeutic manipulations to improve recovery after SCI.  相似文献   

19.
The adult spinal cord harbours a population of multipotent neural precursor cells (NPCs) with the ability to replace oligodendrocytes. However, despite this capacity, proliferation and endogenous remyelination is severely limited after spinal cord injury (SCI). In the post-traumatic microenvironment following SCI, endogenous spinal NPCs mainly differentiate into astrocytes which could contribute to astrogliosis that exacerbate the outcomes of SCI. These findings emphasize a key role for the post-SCI niche in modulating the behaviour of spinal NPCs after SCI. We recently reported that chondroitin sulphate proteoglycans (CSPGs) in the glial scar restrict the outcomes of NPC transplantation in SCI by reducing the survival, migration and integration of engrafted NPCs within the injured spinal cord. These inhibitory effects were attenuated by administration of chondroitinase (ChABC) prior to NPC transplantation. Here, in a rat model of compressive SCI, we show that perturbing CSPGs by ChABC in combination with sustained infusion of growth factors (EGF, bFGF and PDGF-AA) optimize the activation and oligodendroglial differentiation of spinal NPCs after injury. Four days following SCI, we intrathecally delivered ChABC and/or GFs for seven days. We performed BrdU incorporation to label proliferating cells during the treatment period after SCI. This strategy increased the proliferation of spinal NPCs, reduced the generation of new astrocytes and promoted their differentiation along an oligodendroglial lineage, a prerequisite for remyelination. Furthermore, ChABC and GF treatments enhanced the response of non-neural cells by increasing the generation of new vascular endothelial cells and decreasing the number of proliferating macrophages/microglia after SCI. In conclusions, our data strongly suggest that optimization of the behaviour of endogenous spinal NPCs after SCI is critical not only to promote endogenous oligodendrocyte replacement, but also to reverse the otherwise detrimental effects of their activation into astrocytes which could negatively influence the repair process after SCI.  相似文献   

20.

Background

Traumatic spinal cord injury (SCI) leads to disruption of axons and macroscopic tissue loss. Using diffusion tensor imaging (DTI), we assessed degeneration of the corticospinal tract (CST) in the cervical cord above a traumatic lesion and explored its relationship with cervical atrophy, remote axonal changes within the cranial CST and upper limb function.

Methods

Nine cervical injured volunteers with bilateral motor and sensory impairment and ten controls were studied. DTI of the cervical cord and brain provided measurements of fractional anisotropy (FA), while anatomical MRI assessed cross-sectional spinal cord area (i.e. cord atrophy). Spinal and central regions of interest (ROI) included the bilateral CST in the cervical cord and brain. Regression analysis identified correlations between spinal FA and cranial FA in the CST and disability.

Results

In individuals with SCI, FA was significantly lower in both CSTs throughout the cervical cord and brain when compared with controls (p≤0.05). Reduced FA of the cervical cord in patients with SCI was associated with smaller cord area (p = 0.002) and a lower FA of the cranial CST at the internal capsule level (p = 0.001). Lower FA in the cervical CST also correlated with impaired upper limb function, independent of cord area (p = 0.03).

Conclusion

Axonal degeneration of the CST in the atrophic cervical cord, proximal to the site of injury, parallels cranial CST degeneration and is associated with disability. This DTI protocol can be used in longitudinal assessment of microstructural changes immediately following injury and may be utilised to predict progression and monitor interventions aimed at promoting spinal cord repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号