首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using our original in vitro assay system with goldfish scales, we examined the direct effect of prostaglandin E? (PGE?) on osteoclasts and osteoblasts in teleosts. In this assay system, we measured the activity of alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) as respective indicators of each activity in osteoblasts and osteoclasts. ALP activity in scales significantly increased following treatment at high concentration of PGE?(10?? and 10?? M) over 6 hrs of incubation. At 18 hrs of incubation, ALP activity also significantly increased in the PGE? (10?? to 10?? M)-treated scale. In the case of osteoclasts, TRAP activity tended to increase at 6 hrs of incubation, and then significantly increased at 18 hrs of incubation by PGE? (10(-7) to 10?? M) treatment. At 18 hrs of incubation, the mRNA expression of osteoclastic markers (TRAP and cathepsin K) and receptor activator of the NF-κB ligand (RANKL), an activating factor of osteoclasts expressed in osteoblasts, increased in PGE? treated-scales. Thus, PGE? acts on osteoblasts, and then increases the osteoclastic activity in the scales of goldfish as it does in the bone of mammals. In an in vivo experiment, plasma calcium levels and scale TRAP and ALP activities in the PGE?-injencted goldfish increased significantly. We conclude that, in teleosts, PGE? activates both osteoblasts and osteoclasts and participates in calcium metabolism.  相似文献   

2.
3.
4.
To examine the direct effects of tributyltin acetate (TBTA) on osteoclasts and osteoblasts, teleost scale, which has both osteoclasts and osteoblasts and is similar to mammalian membrane bone, was used in the present study. The activities of tartrate-resistant acid phosphatase and alkaline-phosphatase, as respective indicators of activity in both cells, were used. In freshwater teleost (goldfish) and marine teleosts (nibbler and wrasse), the osteoclastic activity in the scales did not change as a result of TBTA treatment (10(-9) to 10(-5) M). However, the osteoblastic activity decreased in the goldfish, nibbler, and wrasse after 6 h of incubation. In goldfish, even 10(-10) M of TBTA significantly inhibited the osteoblastic activity. The inhibitory activity in goldfish was stronger than that in nibbler and wrasse. Therefore, details of the mechanism were examined using goldfish. The mRNA expressions of the estrogen receptor and insulin-like growth factor-I, which participate in osteoblastic growth and differentiation, decreased in the TBTA-treated scales. However, the mRNA expression of metallothionein (MT), a metal-binding protein that protects the organism from heavy metal, increased much less than those of cadmium and methyl-mercury. Furthermore, we showed that the plasma calcium and hypocalcemic hormone (calcitonin) level increased in goldfish kept in water containing TBTA (10(-10) and 10(-8) M). The current data are the first to demonstrate that, in teleosts, TBTA inhibits osteoblastic activity without affecting osteoclastic activity and disrupts the calcium metabolism, including the calcemic hormone, in goldfish.  相似文献   

5.
In teleosts, prolactin is involved in calcium regulation, but its role in scale/bone metabolism is unclear. Using the in-vitro system with goldfish scales developed recently, we explored the effects of teleost prolactin, growth hormone, and somatolactin on osteoclasts and osteoblasts. Addition of prolactin at concentrations of 0.01-100 ng/ml reduced osteoclastic activity, partly via osteoclast apoptosis, after 6-18 h incubation. Conversely, growth hormone and somatolactin at a concentration of 100 ng/ml increased osteoclastic activity after 18 h incubation, indicating the specificity of the inhibitory effect of prolactin on osteoclastic activity. On the other hand, these three hormones promoted osteoblastic activity at concentrations of 10-100 ng/ml. The results from this study are the first demonstration of direct effects of prolactin on scale/bone metabolism and osteoclastic activity in a teleost.  相似文献   

6.
Osteoclasts are multinucleated cells specialized in degrading bone and characterized by high expression of the enzymes tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CtsK). Recent studies show that osteoclasts exhibit phenotypic differences depending on their anatomical site of action.Using immunohistochemistry, RT-qPCR, FPLC chromatography and immunoblotting, we compared TRAP expression in calvaria and long bone. TRAP protein and enzyme activity levels were higher in long bones compared to calvaria. In addition, proteolytic processing of TRAP was more extensive in long bones than calvaria which correlated with higher cysteine proteinase activity and protein expression of CtsK. These two types of bones also exhibited a differential expression of monomeric TRAP and CtsK isoforms. Analysis of CtsK−/− mice revealed that CtsK is involved in proteolytic processing of TRAP in calvaria. Moreover, long bone osteoclasts exhibited higher expression of not only TRAP and CtsK but also of the membrane markers CD68 and CD163.The results suggest that long bone osteoclasts display an augmented osteoclastic phenotype with stronger expression of both membranous and secreted osteoclast proteins.  相似文献   

7.
Poly-and monoclonal antibodies, raised against mammalian membrane-bound proton pump (V-ATPase) were applied to the bone-resorbing cells of Oreochromis niloticus to clarify if osteoclasts of an advanced teleost species display V-ATPase, a key enzyme in the process of bone resorption. All antibodies labelled cells at known sites of bone resorption, the endosteal bone surfaces surrounding the tooth anlagen. The best results were achieved with a monoclonal antibody (E11). Although the majority of labelled cells were flat and mononucleated, the occurrence of V-ATPase in these cells indicates that they function as active bone-resorbing cells. The monoclonal antibody E11 was also applied successfully to monocytes, cells that are believed to be related most closely to osteoclasts. The assignment of V-ATPase to boneresorbing cells of O. niloticus was confirmed by application of the additional osteoclast markers, tartrate-resistant acid phosphatase (TRAP) and tartrate-resistant ATPase (TraATPase). Co-expression of V-ATPase, TRAP and TraATPase in fish osteoclasts is demonstrated for the first time.  相似文献   

8.
Summary This paper reports the common occurrence of osteoclasts during normal and experimental bone resorption in a number of teleost fishes. Light-microscopical observations on osteoclasts are presented in resorption areas on perichondral bone (mandibula and pharyngeal jaws of cichlids and vertebrae of gymnotids), on dermal bone (mandibula of salmonids and characoids and frontal bone of cichlids), on chondroid bone (pharyngeal jaws of cichlids), and on elasmoid body scales (eichlids and gymnotids). Osteoclasts acting along the bone surface usually lie in a Howship's lacuna whereas others are wrapped around bone extremities. Electronmicroscopical observations reveal that teleost osteoclasts show features similar to those of higher vertebrate osteoclasts, c.g., the presence of a ruffled border and the occurrence of numerous vacuoles, lysosomes and mitochondria. The multinucleated aspect that characterizes osteoclasts in other vertebrate groups is not a distinct feature of teleost osteoclasts since some are possibly mononucleated. Teleost osteoclasts are also able to resorb uncalcified tissues adjoining bone resorption areas, either as a primary process directed toward the tissue (basal plate of elasmoid scale) or as a secondary phenomenon (cartilage).  相似文献   

9.
MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts. Despite a similar appearance to osteoclasts, RANKL treatment was required in order for TRAP(+)/CTR(+) multinuclear cells to develop bone resorption activity. The lack of bone resorption was correlated with a deficiency in expression of certain genes related to bone resorption, such as cathepsin K and MMP9. Furthermore, calcitonin blocked the MCP-1-induced formation of TRAP(+)/CTR(+) multinuclear cells as well as blocking osteoclast bone resorption activity, indicating that calcitonin acts at two stages of osteoclast differentiation. Ablation of NFATc1 in mature osteoclasts did not prevent bone resorption activity, suggesting NFATc1 is involved in cell fusion events and not bone resorption. We propose that the MCP-1-induced TRAP(+)/CTR(+) multinuclear cells represent an arrested stage in osteoclast differentiation, after NFATc1 induction and cellular fusion but prior to the development of bone resorption activity.  相似文献   

10.
Bone resorption and bone remodelling in juvenile carp, Cyprinus carpio L.   总被引:1,自引:0,他引:1  
The present study considers the important role of bone resorption for bone growth in general, and aims to clarify if and how bone resorption contributes to the skeletal development of carp, Cyprinus carpio L., a teleost species with ‘normal’ osteocyte‐containing (cellular) bone. To ensure the identification of osteoclasts and sites of bone resorption independently from the morphology of the bony cells, bones were studied by histological procedures, and by demonstration of the enzymes which serve as osteoclast markers, viz. tartrate resistant acid phosphatase (TRAP), ATPase and a vacuolar proton pump. Two types of bone‐resorbing cells were observed in juvenile carp: (1) multinucleated giant cells displaying morphological and biochemical attributes which are known from mammalian osteoclasts; and (b) flat cells which lack a visible ruffled border and for which identification requires the performance of enzyme histochemical procedures. Bone resorption performed by osteoclasts mainly occurs at endosteal bone surfaces. To a lesser extent, bone resorption also takes place at periosteal bone surfaces, but without an apparent connection to bone growth. The latter observation, and the occurrence of bone remodelling, suggest that the endoskeleton of juvenile carp might be involved in mineral metabolism. Morphological differences and biochemical similarities to bone resorption in teleosts with acellular bone are discussed.  相似文献   

11.
Enzymatic activity of type 5 tartrate-resistant acid phosphatase (TRAP) has been regarded as one of the reliable markers for osteoclasts and their precursors. The presence of TRAP activity in osteocytes near the bone resorbing surface has also been pointed out in some reports. However, the significance of TRAP reactions in osteocytes remains controversial and, in fact, there is no agreement as to whether the histochemical enzyme reactions in osteocytes represent the TRAP enzyme generated by the respective osteocytes or is a mere diffusion artifact of the reaction products derived from the nearby osteoclasts. Current histochemical, immunohistochemical, and in situ hybridization studies of rat and canine bones confirmed TRAP enzyme activity, TRAP immunoreactivity, and the expression of Trap mRNA signals in osteocytes located close to the bone-resorbing surface. TRAP/Trap- positive osteocytes thus identified were confined to the areas no further than 200 microm from the bone-resorbing surface and showed apparent upregulation of TRAP/Trap expression toward the active osteoclasts. Spatial and temporal patterns of TRAP/Trap expression in the osteocytes should serve as a valuable parameter for further analyses of biological interactions between the osteocytes and the osteoclasts associated with bone remodeling.  相似文献   

12.
Cysteine proteases and matrix metalloproteinases (MMPs) are important factors in the degradation of organic matrix components of bone. Osteoprotegerin (OPG) is an osteoblast-secreted decoy receptor that inhibits osteoclast differentiation and activation. This study investigated the direct effects of human OPG on cathepsin K, MMP-9, MMP-2, and tissue inhibitors of metalloproteinases (TIMP1 and TIMP2) expressed by purified rabbit osteoclasts. The expression of two osteoclast markers, namely tartrate-resistant acid phosphatase (TRAP) and cathepsin K, was inhibited by 100 ng/mL hOPG, whereas MMP-9 expression was enhanced. Gelatinase activities were measured using a zymographic assay, and hOPG was shown to enhance both pro-MMP-9 and MMP-2 activities. Concomitantly, TIMP1 expression was greatly stimulated by hOPG, whereas TIMP2 mRNA levels were not modulated. Overall, these results show that hOPG regulates the proteases produced by purified osteoclasts differentially, producing a marked inhibitory effect on the expression of cathepsin K, the main enzyme involved in bone resorption.  相似文献   

13.
Bone is one of the most common sites of breast cancer metastasis while bone sialoprotein (BSP) is thought to play an important role in bone metastasis of malignant tumors. The objective of this study is to determine the role of BSP overexpression in osteolytic metastasis using two homozygous transgenic mouse lines in which BSP expression is elevated either in all the tissues (CMV-BSP mice) or only in the osteoclasts (CtpsK-BSP mice). The results showed that skeletal as well as systemic metastases of 4T1 murine breast cancer cells were dramatically increased in CMV-BSP mice. In CtpsK-BSP mice, it was found that targeted BSP overexpression in osteoclasts promoted in vitro osteoclastogenesis and activated osteoclastic differentiation markers such as Cathepsin K, TRAP and NFAT2. MicroCT scan demonstrated that CtpsK/BSP mice had reduced trabecular bone volume and bone mineral density (BMD). The real-time IVIS Imaging System showed that targeted BSP overexpression in osteoclasts promoted bone metastasis of breast cancer cells. The osteolytic lesion area was significantly larger in CtpsK/BSP mice than in the controls as demonstrated by both radiographic and histomorphometric analyses. TRAP staining demonstrated a twofold increase in the number of osteoclasts in the bone lesion area from CtpsK/BSP mice compared with that from wild type mice. We conclude that host tissue-derived BSP also plays important roles in breast cancer metastasis through inducing tumor cell seeding into the remote host tissues. Furthermore, osteoclast-derived BSP promotes osteoclast differentiation in an autocrine manner and consequently promotes osteolytic bone metastasis of breast cancer.  相似文献   

14.
Elasmoid scales from the common carp (and other teleostean fishes) appear to be an exciting new model in the research of mineralized tissues. The presence of alkaline phosphatase (ALP), a marker of mineralization, on both sides of the scale was demonstrated by means of enzyme histochemistry. Tartrate‐resistant acid phosphatase, a marker for mineral degradation and osteoclasts, was observed along the radii, at the same location as the ALP activity on the episquamal side. This points towards an active mineral metabolism, were scale cells are involved in both formation and degradation of the mineralized matrix. Cathepsin K staining revealed the presence of multinuclear osteoclasts along the grooves of the scale. Interestingly, the scales were taken from growing control fish; they were not induced to resorb their matrix. Presence of these enzymes in scale cells, together with the demineralized regions in the centre of the scale suggest a more dynamic mineral metabolism in cyprinid scales then previously observed in other species. Scales are derived from odontode tissues, their formation relies on many the same underlying mechanisms and genes as other mineralized tissues. Moreover, a single scale offers the possibility to culture scale‐forming and ‐degrading cells together on their original matrix. All of the these unique properties substantiate the potential of scales to yield new insights on osteoclasts and regulation of tissue mineralization.  相似文献   

15.
Tartrate-resistant acid phosphatase (TRAP) is an enzyme highly expressed in osteoclasts (OC) and chondroclasts. As an approach to pinpoint the function of TRAP in bone-resorbing osteoclasts, the morphological phenotypic alterations of bone and osteoclasts in mice with targeted disruption of the TRAP gene were assessed by quantitative histomorphometry and immunocytochemistry at the light microscopic and ultrastructural levels. TRAP-deficient mice display alterations in the epiphyseal growth plates as evidenced by increased height with disorganized columns of chondrocytes, in particular affecting the zone of hypertrophic chondrocytes, consistent with a disturbance of chondrocyte maturation and chondroclastic resorption at the epiphyseal/metaphyseal junction. TRAP -/- mice express an early onset osteopetrotic bone phenotype, apparent already at 4 weeks of age. The differentiation of OCs was apparently normal; however, the osteoclasts in TRAP-deficient mice were less active in terms of degradation or release of the resorption marker C-terminal type I collagen cross-linked peptide, indicative of an intrinsic defect. Ultrastructural morphometry disclosed that OCs from TRAP-deficient young mice exhibited an increased relative area of ruffled borders. Moreover, mutant OC accumulated cytoplasmic vesicles 200-500 nm in size in both ruffled border and basolateral parts of the cytoplasm, reflecting disturbed intracellular transport. The accumulated vesicles were not likely derived from the secretory pathway, since cathepsin K was detected at normal levels in the ruffled border area and matrix in TRAP -/- mice. In summary, the resorptive defect in TRAP-deficient OCs is reflected by a disturbance at the level of ruffled borders and intracellular transport vesicles. Consequently, accumulation of vesicles in the cytoplasm of mutant OCs indicates a novel function for TRAP in modulating intracellular vesicular transport in osteoclasts.  相似文献   

16.
Osteoclasts are specialized cells that secrete lysosomal acid hydrolases at the site of bone resorption, a process critical for skeletal formation and remodeling. However, the cellular mechanism underlying this secretion and the organization of the endo-lysosomal system of osteoclasts have remained unclear. We report that osteoclasts differentiated in vitro from murine bone marrow macrophages contain two types of lysosomes. The major species is a secretory lysosome containing cathepsin K and tartrate-resistant acid phosphatase (TRAP), two hydrolases critical for bone resorption. These secretory lysosomes are shown to fuse with the plasma membrane, allowing the regulated release of acid hydrolases at the site of bone resorption. The other type of lysosome contains cathepsin D, but little cathepsin K or TRAP. Osteoclasts from Gnptab(-/-) (gene encoding GlcNAc-1-phosphotransferase α, β-subunits) mice, which lack a functional mannose 6-phosphate (Man-6-P) targeting pathway, show increased secretion of cathepsin K and TRAP and impaired secretory lysosome formation. However, cathepsin D targeting was intact, showing that osteoclasts have a Man-6-P-independent pathway for selected acid hydrolases.  相似文献   

17.

Background

Inoxitol hexakisphosphate (IP6) has been found to have an important role in biomineralization and a direct effect inhibiting mineralization of osteoblasts in vitro without impairing extracellular matrix production and expression of alkaline phosphatase. IP6 has been proposed to exhibit similar effects to those of bisphosphonates on bone resorption, however, its direct effect on osteoclasts (OCL) is presently unknown.

Methodology/Principal Findings

The aim of the present study was to investigate the effect of IP6 on the RAW 264.7 monocyte/macrophage mouse cell line and on human primary osteoclasts. On one hand, we show that IP6 decreases the osteoclastogenesis in RAW 264.7 cells induced by RANKL, without affecting cell proliferation or cell viability. The number of TRAP positive cells and mRNA levels of osteoclast markers such as TRAP, calcitonin receptor, cathepsin K and MMP-9 was decreased by IP6 on RANKL-treated cells. On the contrary, when giving IP6 to mature osteoclasts after RANKL treatment, a significant increase of bone resorption activity and TRAP mRNA levels was found. On the other hand, we show that 1 µM of IP6 inhibits osteoclastogenesis of human peripheral blood mononuclear cells (PBMNC) and their resorption activity both, when given to undifferentiated and to mature osteoclasts.

Conclusions/Significance

Our results demonstrate that IP6 inhibits osteoclastogenesis on human PBMNC and on the RAW264.7 cell line. Thus, IP6 may represent a novel type of selective inhibitor of osteoclasts and prove useful for the treatment of osteoporosis.  相似文献   

18.
19.
Tartrate-resistant acid phosphatase (TRAP) is an enzyme expressed specifically in osteoclasts and activated macrophages, two phagocytosing cell types originating from the same hematopoietic stem cells. TRAP contains a binuclear iron centre which has been shown to generate reactive oxygen species (ROS). In this study murine macrophage like cell line RAW-264 overexpressing TRAP was shown to produce elevated levels of hydroxyl radicals compared to parental cells. TRAP transfected cells also had reduced growth rate indicating harmful effects of excessive intracellular ROS levels. Using TRAP specific antibody TRAP protein was shown in alveolar macrophages partially colocalize with late endosomal/lysosomal markers Rab7, Lamp 1 and MHC II molecules that bind antigenic peptides. TRAP also colocalized into compartments where Staphylococcus aureus were phagocytosed. These results suggest that TRAP may have an important biological function in the defence mechanism of macrophages by generating intracellular ROS which would be targeted to destroy phagocytosed foreign material.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号