首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed a set of chimeric Ig by exchanging corresponding H chain C domains between human (hu) IgG1 and murine (m) IgE. We used this set of Ig to dissect the interaction of individual Ig domains with human Fc gamma receptors. Only one of the chimeras, epsilon/C gamma 2,3 (an mIgE with C epsilon 3 and C epsilon 4 replaced by C gamma 2 and C gamma 3 from huIgG1), binds tightly to the human Fc gamma RI on U937 cells. We found that epsilon/C gamma 2,3 has only twofold lower affinity for Fc gamma RI as compared to huIgG1. The gamma/C epsilon 4 (huIgG1 with C epsilon 4 replacing C gamma 3) binds weakly to Fc gamma RI. The other chimeric Ig, epsilon/C gamma 3, epsilon/C gamma 2, and gamma/C epsilon 3, as well as mIgE do not bind detectably to Fc gamma RI. From these data we conclude that the C gamma 2 domain is crucial for binding and contains the majority of the binding site for Fc gamma RI on IgG1. The C gamma 3 domain makes a smaller contribution to the binding, and the C gamma 1 domain and the hinge region have very little effect on the Fc gamma RI-IgG1 interaction. The chimeric epsilon/C gamma 2,3 and huIgG1 both mediate the formation of rosettes between K562 cells and antigen-sensitized E with similar concentration dependences. These results suggest similar ability to bind to Fc gamma RII. The other chimeric Ig do not cause rosettes in this assay system. Hence, both C gamma 2 and C gamma 3 seem to be required for binding to Fc gamma RII, but the C gamma 1-hinge region has no detectable effect.  相似文献   

2.
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors.  相似文献   

3.
Binding studies of human IgG proteins to murine P388D1 cells indicated that they bind to an apparently homogeneous Fc receptor population. The association constant was 0.89 x 10(6)M-1 at 22 degrees C and was comparable to the binding affinities of homologous murine IgG2a and IgG2b. The number of receptor sites was found to be approximately 6 x 10(5)/cell. Fc gamma 1 and Fc gamma 3 fragments bound with an affinity comparable to that of the parent proteins. The P388D1 receptors could discriminate between the human IgG subclasses; the relative cytophilic activity was IgG3 greater than IgG1 greater than IgG4 and IgG2 was devoid of binding activity. Fragments corresponding to the C gamma 2 and C gamma 3 domains of human IgG1 were both unable to bind to the P388D1 receptors either alone or in equimolar combination. This suggests that the cytophilic site may be formed cooperatively by interaction between the two domains. The integrity of the hinge region appeared to be essential for full expression of cytophilic activity since reduction of the hinge-region disulfides in both human IgG1 and its Fc fragment markedly decreased their binding affinity. In addition, a mutant IgG1 molecule lacking the hinge region was significantly less cytophilic than its normal counterpart.  相似文献   

4.
Cellular receptors for IgG (Fc gamma R) mediate important protective functions. By using site-specific mutants of a chimeric antibody (mouse V H domain and L chain; human IgG3 C H domains), we have demonstrated that human Fc gamma RI interacts with a site in the lower hinge of human IgG (residues 234 to 237) and that this interaction dictates Fc gamma RI-mediated superoxide generation. Mutations at position 235 resulted in the most profound reductions in Fc gamma RI recognition. We have also mapped an interaction site for Fc gamma RII to the same region; however, mutations at position 234 and 237 resulted in the greatest reductions in Fc gamma RII recognition. The two receptors appear to recognize overlapping but nonidentical sites on the lower hinge of IgG. Deviations from the optimal motif 234-Leu-Leu-Gly-Gly-237 may then explain the human IgG subclass specificity profile for human Fc gamma RI and Fc gamma RII.  相似文献   

5.
Soluble forms of CD40 inhibit biologic responses of human B cells.   总被引:20,自引:0,他引:20  
We have expressed the CD40 surface Ag as both a soluble 28-kDa molecule and a 57-kDa Fc fusion protein containing the human IgG1 Fc region. Soluble CD40 and the Fc fusion protein inhibited the proliferative response of anti-IgM-activated human B cells to the CD40 mAb G28-5. Similarly, G28-5- and IL-4-induced IgE secretion from PBMC depleted of T cells was effectively blocked by both forms of soluble CD40. Although the soluble constructs of CD40 had only a minimal inhibitory effect on IL-4-mediated proliferation of anti-IgM-activated B cells, IL-4-induced soluble CD23 shedding from both PBMC and T cells depleted of PBMC, and IgE secretion from PBMC, were significantly reduced in a concentration-dependent manner when soluble CD40 was present in the culture. The data presented demonstrate that both soluble forms of the CD40 molecule are biologically active, and suggest that the ligand for CD40 is inducible in IL-4-stimulated cultures and that it mediates both shedding of sCD23 and IgE secretion.  相似文献   

6.
The CH2-CH3 interface of the IgG Fc domain contains the binding sites for a number of Fc receptors including Staphylococcal protein A and the neonatal Fc receptor (FcRn). It has recently been proposed that the CH2-CH3 interface also contains the principal binding site for an isoform of the low affinity IgG Fc receptor II (Fc gamma RIIb). The Fc gamma RI and Fc gamma RII binding sites have previously been mapped to the lower hinge and the adjacent surface of the CH2 domain although contributions of the CH2-CH3 interface to binding have been suggested. This study addresses the question whether the CH2-CH3 interface plays a role in the interaction of IgG with Fc gamma RI and Fc gamma RIIa. We demonstrate that recombinant soluble murine Fc gamma RI and human Fc gamma RIIa did not compete with protein A and FcRn for binding to IgG, and that the CH2-CH3 interface therefore appears not to be involved in Fc gamma RI and Fc gamma RIIa binding. The importance of the lower hinge was confirmed by introducing mutations in the proposed binding site (LL234,235AA) which abrogated binding of recombinant soluble Fc gamma RIIa to human IgG1. We conclude that the lower hinge and the adjacent region of the CH2 domain of IgG Fc is critical for the interaction between Fc gamma RIIa and human IgG, whereas contributions of the CH2-CH3 interface appear to be insignificant.  相似文献   

7.
The Fc (fragment crystallizable) is a common structural region in immunoglobulin gamma (IgG) proteins, IgG-based multi-specific platforms, and Fc-fusion platform technologies. Changes in conformational stability, protein-protein interactions, and aggregation of NS0-produced human Fc1 were quantified experimentally as a function of pH (4 to 6) and temperature (30 to 77°C), using a combination of differential scanning calorimetry, laser light scattering, size-exclusion chromatography, and capillary electrophoresis. The Fc1 was O-glycosylated at position 3 (threonine), and confirmed to correspond to the intact IgG1 by comparison with Fc1 produced by cleavage of the parent IgG1. Changing the pH caused large effects for thermal unfolding transitions, but it caused surprisingly smaller effects for electrostatic protein-protein interactions. The aggregation behavior was qualitatively similar across different solution conditions, with soluble dimers and larger oligomers formed in most cases. Aggregation rates spanned approximately 5 orders of magnitude and could be divided into 2 regimes: (i) Arrhenius, unfolding-limited aggregation at temperatures near or above the midpoint-unfolding temperature of the CH2 domain; (ii) a non-Arrhenius regime at lower temperatures, presumably as a result of the temperature dependence of the unfolding enthalpy for the CH2 domain. The non-Arrhenius regime was most pronounced for lower temperatures. Together with the weak protein-protein repulsions, these highlight challenges that are expected for maintaining long-term stability of biotechnology products that are based on human Fc constructs.  相似文献   

8.
《MABS-AUSTIN》2013,5(6):1072-1083
The Fc (fragment crystallizable) is a common structural region in immunoglobulin gamma (IgG) proteins, IgG-based multi-specific platforms, and Fc-fusion platform technologies. Changes in conformational stability, protein-protein interactions, and aggregation of NS0-produced human Fc1 were quantified experimentally as a function of pH (4 to 6) and temperature (30 to 77°C), using a combination of differential scanning calorimetry, laser light scattering, size-exclusion chromatography, and capillary electrophoresis. The Fc1 was O-glycosylated at position 3 (threonine), and confirmed to correspond to the intact IgG1 by comparison with Fc1 produced by cleavage of the parent IgG1. Changing the pH caused large effects for thermal unfolding transitions, but it caused surprisingly smaller effects for electrostatic protein-protein interactions. The aggregation behavior was qualitatively similar across different solution conditions, with soluble dimers and larger oligomers formed in most cases. Aggregation rates spanned approximately 5 orders of magnitude and could be divided into 2 regimes: (i) Arrhenius, unfolding-limited aggregation at temperatures near or above the midpoint-unfolding temperature of the CH2 domain; (ii) a non-Arrhenius regime at lower temperatures, presumably as a result of the temperature dependence of the unfolding enthalpy for the CH2 domain. The non-Arrhenius regime was most pronounced for lower temperatures. Together with the weak protein-protein repulsions, these highlight challenges that are expected for maintaining long-term stability of biotechnology products that are based on human Fc constructs.  相似文献   

9.
Cross-linking of Fc gamma R on human monocytes with human IgG has been shown to induce secretion of the inflammatory and immunoregulatory cytokine TNF. In the present study we examined the role of both constitutively expressed monocyte Fc gamma R, the 72-kDa high affinity Fc gamma R (Fc gamma RI), and the 40-kDa low affinity receptor (Fc gamma RII), in the induction of TNF secretion. On the basis of preferential binding of the Fc moiety of murine mAb of different isotype, Fc gamma RI and Fc gamma RII were selectively cross-linked by using either solid-phase murine (m)IgG2a, or solid-phase mIgG1, respectively. On freshly isolated, untreated monocytes only cross-linking of Fc gamma RI with solid-phase mIgG2a induced TNF secretion. The interaction between Fc gamma RII and mIgG1 could be enhanced by treatment of monocytes with proteases or with the desialylating enzyme neuraminidase. After treatment of monocytes with these enzymes, TNF secretion was effectively induced by solid-phase mIgG1, apparently through cross-linking of Fc gamma RII. However, mIgG1-induced TNF secretion differed between protease-treated monocytes from high responder individuals and monocytes from low responder individuals, TNF secretion being considerably less in the latter population. Protease-treated monocytes and mononuclear cells from individuals with an inherited defect in cell membrane expression of Fc gamma RI were induced to secrete TNF by solid-phase human IgG, confirming the capacity of Fc gamma RII to induce TNF secretion. It was not possible to induce TNF secretion by cross-linking Fc gamma RI or Fc gamma RII with anti-Fc gamma R mAb and soluble or solid-phase anti-mIgG, indicating that high affinity Fc-Fc gamma R interactions are necessary to induce release of this cytokine.  相似文献   

10.
Human IgG2 antibodies may exist in at least three distinct structural isomers due to disulfide shuffling within the upper hinge region. Antibody interactions with Fc gamma receptors and the complement component C1q contribute to immune effector functions. These interactions could be impacted by the accessibility and structure of the hinge region. To examine the role structural isomers may have on effector functions, a series of cysteine to serine mutations were made on a human IgG2 backbone. We observed structural homogeneity with these mutants and mapped the locations of their disulfide bonds. Importantly, there was no observed difference in binding to any of the Fc gamma receptors or C1q between the mutants and the wild‐type IgG2. However, differences were seen in the apparent binding affinity of these antibodies that were dependent on the selection of the secondary detection antibody used.  相似文献   

11.
IL-6 is a multifunctional cytokine which is produced by a variety of cells. Therefore it was examined whether anti-CD3-induced T cell activation was associated with the induction of functionally relevant IL-6 in human monocyte accessory cells. Significantly increased amounts of IL-6 were detected in supernatants of anti-CD3-treated PBMC. Stimulation of FACS-sorted greater than 98% pure monocyte accessory cells, but not of highly purified T cells with anti-CD3, resulted in an increased IL-6 production. Furthermore, anti-CD3 significantly enhanced IL-6 mRNA expression in monocyte accessory cells. IL-6 production was not limited to anti-CD3, inasmuch as equivalent IL-6 stimulation could be achieved with a mouse IgG2a isotype control antibody. In contrast to solid phase-bound mouse IgG2a, the soluble form of this antibody failed to induce IL-6 secretion indicating a requirement for Fc gamma RI receptor cross-linking. Moreover, this property may be specific for the Fc gamma RI receptor inasmuch as mouse IgG1 antibodies binding to the Fc gamma RII receptor did not significantly enhance IL-6 production. The role of IL-6 being an additional signal in T cell activation was confirmed by the finding that an anti-IL-6 antiserum was able to suppress anti-CD3-induced T cell activation. These data indicate that binding of anti-CD3 to Fc gamma RI may generate an activation signal towards the monocyte accessory cell leading to the production and secretion of monocyte IL-6, which in turn augments T cell activation, and also may be relevant to a variety of antibody-mediated immune responses against viral and bacterial infections.  相似文献   

12.
Neutrophils and monocytes in cattle express a novel class of immunoglobulin Fc receptor, specific for bovine IgG2 (bIgG2), termed bFc gamma 2R. In cows, the ability of neutrophils to kill immunoglobulin-opsonized microorganisms appears to depend largely on this subclass, whose interaction with bFc gamma 2R initiates the killing process. bFc gamma 2R is a transmembrane glycoprotein consisting of two extracellular immunoglobulin-like domains, followed by a 19-amino acid membrane-spanning region and a short cytoplasmic tail. Although related to other mammalian Fc gamma Rs, bFc gamma 2R belongs to a novel gene family that includes the human killer cell inhibitory receptor and Fc alpha RI (CD89) proteins. We have shown previously (Morton, H. C., van Zandbergen, G., van Kooten, C., Howard, C. J., van de Winkel, J. G., and Brandtzaeg, P. (1999) J. Exp. Med. 189, 1715-1722) that like these proteins (and unlike other Fc gamma Rs), bFc gamma 2R binds bIgG2 via the membrane-distal extracellular domain 1 (EC1). In this present study, we introduced mutations into the predicted loop regions of the EC1 domain and assayed the resulting bFc gamma 2R mutants for their ability to bind bIgG2. Our results indicated that the bIgG2 binding site lies within the predicted F-G loop region of the EC1 domain. Furthermore, single amino acid mutational analysis of this region identified Phe-82 and Trp-87 as being critical for bIgG2 binding.  相似文献   

13.
IgG antibodies (Abs) and fragments of IgG Abs are becoming major biotherapeutics to treat an assortment of human diseases. Commonly prepared fragments of IgGs include Fc, Fab, and F(ab')2 fragments, all of which can be made using the sulfhydryl protease papain, although prolonged digestion times and/or excessive amounts of papain typically result in further cleavage of the Fc domain into smaller fragments. During our attempts to use papain to isolate Fc fragments from different IgG monoclonal Abs, it was observed that prior removal of Fc glycans resulted in a faster rate of papain-mediated degradation of the Fc domain. Subsequent time-course experiments comparing glycosylated and deglycosylated versions of IgG antibodies showed that the majority of molecules in a deglycosylated IgG sample were converted into Fab, Fc, and smaller Fc fragments in less than one hour, whereas the original glycosylated IgG required more than two hours to convert into a comparable amount of Fab and Fc fragments. Furthermore, whereas papain digestion converted almost all of a deglycosylated Fc fragment into smaller fragments of approximately 10 and approximately 12 kDa within 4 h, more than 40% of a glycosylated Fc fragment remained intact even after 24 h of digestion. These results indicate that the presence of CH(2) domain glycans in either IgGs or purified Fc fragments increases resistance to papain digestion. Increased sensitivity of non-glycosylated Fc domains to papain is consistent with the Fc domains lacking a defined structure, as exemplified by their inability to bind Fcgamma receptors, since misfolded proteins are often degraded by proteases because of increased accessibility of their proteolytic cleavage sites. Based on these observations it is possible to use papain sensitivity as a means of assessing proper Fc structure of IgG molecules.  相似文献   

14.
We have utilized gene transfer experiments to investigate the role of a human monocyte receptor for IgG (Fc gamma RII) in mouse IgG1 anti-CD3 (Leu 4)-induced lymphoproliferation in vitro. Mouse Ltk- cells expressing human Fc gamma RII or a mutant of Fc gamma RII lacking the entire cytoplasmic domain of the receptor mediate anti-CD3-induced lymphoproliferation in cultures of adherent cell-depleted human PBMC. Expression of an Fc gamma RII mutant lacking transmembrane and cytoplasmic domains (soluble Fc gamma RII) in COS7 cells yielded a secreted receptor which retained affinity for IgG, even in the absence of the mutant receptor's N-linked oligosaccharides. Soluble Fc gamma RII inhibits rosette formation by human IgG-sensitized RBC and the Fc gamma RII-bearing cell line K562, but does not sitmulate anti-CD3-induced lymphoproliferation under the conditions tested.  相似文献   

15.
We have investigated the role of protein tyrosine phosphorylation in transmembrane signaling via the IgG receptors Fc gamma RI and Fc gamma RII in the human monocytic cell line THP-1. Fc gamma RI and Fc gamma RII were selectively engaged using the anti-Fc gamma RI mAb 197 (IgG2a) and the anti-Fc gamma RII mAb IV.3 (IgG2b). Addition to cells of mAb 197, but not addition of IgG2a mAb of irrelevant specificity, resulted in the rapid induction of cytoplasmic protein tyrosine phosphorylation as assessed by antiphosphotyrosine immunoblotting. A similar pattern of tyrosine phosphorylation was induced by mAb IV.3, but not by control IgG2b mAb. The induction of tyrosine phosphorylation by anti-Fc gamma R mAb was not dependent on antibody Fc region-FcR interactions, because tyrosine phosphorylation was also induced by cross-linked anti-Fc gamma RI F(ab')2 fragments and by cross-linked anti-Fc gamma RII Fab fragments. To investigate the relationship of Fc gamma R-induced tyrosine phosphorylation and activation of phospholipase C, which is known to follow Fc gamma R engagement, we assessed the effect of the tyrosine kinase inhibitor herbimycin A on Fc gamma R-induced Ca2+ flux. Herbimycin A strongly inhibited cellular Ca2+ flux induced by mAb 197, but did not inhibit Ca2+ flux induced by aluminum fluoride, suggesting that tyrosine phosphorylation may be important in regulating Fc gamma R-mediated activation of phospholipase C. Consistent with this, mAb 197 induced rapid phosphorylation of the gamma-1 isoform of phospholipase C. Finally, herbimycin A strongly inhibited the induction of TNF-alpha mRNA accumulation by Fc gamma R cross-linking. These results suggest that protein tyrosine phosphorylation may play an important role in the activation of phospholipase C and in the induction of monokine gene expression that follows engagement of Fc gamma R in human monocytes.  相似文献   

16.
The amino acid sequences of most of the CH1, CH2 and CH3 domains of IgG Zie, a myeloma protein belonging to the IgG2 subclass, are presented. These data make possible a comparison of the sequences of residues 253-446 of all four subclasses of immunoglobulins: these residues make up almost the entire Fc regions. A comparison can also be made of the CH1 domain of IgG1 Eu and the CH1 domain of IgG2 Zie. Earlier sequence analyses of the Fc regions of subclass 1 and 3 proteins, and parts of the Fc regions of subclass 2 and 4 proteins showed that about 95% of these sequences were identical. The extended comparisons made possible by the data presented here show that this very high degree of identity is maintained throughout the four subclasses. Similarly, the CH1 domains of gamma 1 and gamma 2 chains were found to have about 93% sequence identity. It is unlikely that the few single amino acid changes within the constant region domains can account for the marked differences between subclasses observed in the region domains can account for the marked differences between subclasses observed in the biological effector functions of immunoglobulin Fc regions, especially since most of the changes are highly conservative. Rather, it seems probable that these functional differences are caused by conformational differences between the subgroups, which result from sequence differences in the hinge regions.  相似文献   

17.
Fc fragments derived from a human IgG1 myeloma protein potentiate the rat delayed-type hypersensitivity (DTH) reaction to antigen challenge. Lewis rats immunized with heat-killed tubercle bacilli give augmented DTH reactions to the purified protein derivative of tuberculin when Fc fragments are included in the challenge dose. Similar potentiation of DTH by pFc' fragments indicates that the active site is located in the CH3 domain of IgG1. Histologic evaluation of the augmented reaction sites revealed predominantly mononuclear cell infiltrates characteristic of DTH reactions. Skin tests of tubercle bacilli-sensitized rats with an unrelated antigen and/or Fc fragments fail to elicit significant reactions. Augmentation of the DTH reaction to purified protein derivative is restricted to the Fc or pFc' region fragments since intact monomeric IgG1, Fab fragments, and bovine serum albumin were all shown not to be active potentiators. The DTH reaction of ovalbumin-sensitized rats was similarly augmented when Fc fragments were included with a challenge dose of ovalbumin, thus supporting the general nature of the phenomenon. These results support the concept of Ig molecules as multifunctional proteins that can not only serve effector functions but also participate in the regulation of immune responses.  相似文献   

18.
Monocytes can express three classes of FcR for IgG: Fc gamma RI, Fc gamma RII, and Fc gamma RIII (CD64, CD32, and CD16, respectively) of which the Fc gamma RIII is expressed after prolonged culture. Fc gamma R expression is regulated by IFN-gamma. Because IFN-gamma and IL-4 have antagonistic effects on the expression of the FcR for IgE on human monocytes, we studied the effect of IL-4 on Fc gamma R expression and function. We show that IL-4 down-regulates Fc gamma RI, Fc gamma RII, and Fc gamma RIII expression of cultured monocytes and inhibits IFN-gamma enhanced Fc gamma RI expression. Exposure of monocytes to IL-4 for 40 h resulted in a dose-dependent decrease of the expression of all three Fc gamma R that persisted throughout the whole culture period (7 days). Anti-IL-4 antibodies completely reversed the IL-4 effect. In addition the impaired Fc gamma R expression correlated directly with reduced Fc gamma R-mediated function because monocytes cultured in the presence of IL-4 have a reduced capacity to lyse human E opsonized with human IgG anti-D or mouse antiglycophorin A antibodies. These observations, together with the previous finding that IL-4 induces Fc epsilon RIIb expression on monocytes, indicate that IL-4 and IFN-gamma may control the Fc gamma R-mediated immune response by differentially regulating Fc gamma R expression.  相似文献   

19.
The stability of therapeutic antibodies is a prime pharmaceutical concern. In this work we examined thermal stability differences between human IgG1 and IgG4 Fab domains containing the same variable regions using the thermofluor assay. It was found that the IgG1 Fab domain is up to 11°C more stable than the IgG4 Fab domain containing the same variable region. We investigated the cause of this difference with the aim of developing a molecule with the enhanced stability of the IgG1 Fab and the biological properties of an IgG4 Fc. We found that replacing the seven residues, which differ between IgG1 C(H) 1 and IgG4 C(H) 1 domains, while retaining the native IgG1 light-heavy interchain disulfide (L-H) bond, did not affect thermal stability. Introducing the IgG1 type L-H interchain disulfide bond (DSB) into the IgG4 Fab resulted in an increase in thermal stability to levels observed in the IgG1 Fab with the same variable region. Conversely, replacement of the IgG1 L-H interchain DSB with the IgG4 type L-H interchain DSB reduced the thermal stability. We utilized the increased stability of the IgG1 Fab and designed a hybrid antibody with an IgG1 C(H) 1 linked to an IgG4 Fc via an IgG1 hinge. This construct has the expected biophysical properties of both the IgG4 Fc and IgG1 Fab domains and may therefore be a pharmaceutically relevant format.  相似文献   

20.
T cell activation induced by mouse anti-CD3 mAb has shown to be dependent on the Ig isotype of these antibodies. A study of isotype dependency of human antibodies, however, seems more relevant to human effector systems, especially in view of the availability of humanized antibodies for clinical applications. We constructed a panel of mouse and mouse/human chimeric anti-CD3 mAb, which differ only in their CH region and hence have identical binding sites and affinity. By using these antibodies, we now studied their ability to induce T cell proliferation in human PBMC and analyzed the classes of IgG FcR involved in these responses. The human (h)IgG1, hIgG3, and hIgG4, as well as mouse (m)IgG2a and mIgG3 anti-CD3 mAb induced an Fc gamma RI (CD64)-dependent T cell proliferation in all donors. Activation with hIgG2 and mIgG1 anti-CD3 mAb was observed to be mediated via the low affinity Fc gamma RII (CD32). It was found that leukocytes in a normal donor population display a functional polymorphism with respect to hIgG2 anti-CD3 responsiveness. This polymorphism was found to be inversely related to the previously defined Fc gamma RII-polymorphism to mIgG1 anti-CD3 mAb. Monocytes expressing the Fc gamma RII mIgG1 low responder (LR) allele support hIgG2 anti-CD3 induced T cell proliferation efficiently, whereas cells homozygous for the Fc gamma RII mIgG1 high responder (HR) allele do not. This observation could be confirmed in T cell activation studies using hFc gamma RIIa-transfected mouse fibroblasts, expressing either the mIgG1 anti-CD3 HR or LR Fc gamma RII-encoding cDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号