首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The D. melanogaster transposon P[35UZ] contains a lacZ reporter gene fused to 35 kb of Ubx upstream sequences which drive a Ubx-like expression in embryos and in metathoracic imaginal discs. Transposition of P[35UZ] followed by analysis of different lines in wild-type and mutant backgrounds allowed us to analyze the interplay between Ubx regulatory elements, including the Polycomb response element (PRE), located inside the transposon and cis-acting regulatory elements, located outside. We found that all lines show a Ubx-like beta-galactosidase expression pattern in the embryo, but proximity to strong imaginal enhancers can change this pattern drastically. These data illustrate how maintenance of gene expression depends on the chromosomal environment and on dynamic interactions between all developmentally regulated enhancers located close to a promoter under PcG control.  相似文献   

2.
S Poux  C Kostic    V Pirrotta 《The EMBO journal》1996,15(17):4713-4722
Drosophila homeotic genes are kept silent outside of their appropriate expression domains by a repressive chromatin complex formed by the Polycomb Group proteins. In the case of the Ubx gene, it has been proposed that the early repressor HB, binding at enhancers, recruits the Polycomb complex and specifies the domain of repression. We show that some Ubx enhancers are activated after blastoderm. If a Polycomb Response Element (PRE) is combined with such late enhancers, repression of a reporter gene can be established everywhere in the embryo, irrespective of the presence or absence of hunchback protein. If, however, these late enhancers are combined with a Ubx early enhancer, as well as a PRE, repression is established only where the reporter gene was inactive at early stages. These results imply that the Polycomb complex is not dependent on hunchback and suggest that the pattern of silencing reflects rather the state of activity of the gene at the time the Polycomb complex is formed.  相似文献   

3.
S Qian  M Capovilla    V Pirrotta 《The EMBO journal》1991,10(6):1415-1425
The Drosophila homeotic gene Ultrabithorax (Ubx) is regulated by complex mechanisms that specify the spatial domain, the timing and the activity of the gene in individual tissues and in individual cells. In early embryonic development, Ubx expression is controlled by segmentation genes turned on earlier in the developmental hierarchy. Correct Ubx expression depends on multiple regulatory sequences located outside the basal promoter. Here we report that a 500 bp DNA fragment from the bx region of the Ubx unit, approximately 30 kb away from the promoter, contains one of the distant regulatory elements (bx region enhancer, BRE). During early embryogenesis, this enhancer element activates the Ubx promoter in parasegments (PS) 6, 8, 10, and 12 and represses it in the anterior half of the embryo. The repressor of the anterior Ubx expression is the gap gene hunchback (hb). We show that the hb protein binds to the BRE element and that such binding is essential for hb repression in vivo, hb protein also binds to DNA fragments from abx and bxd, two other regulatory regions of the Ubx gene. We conclude that hb represses Ubx expression directly by binding to BRE and probably other Ubx regulatory elements. In addition, the BRE pattern requires input from other segmentation genes, among them tailless and fushi tarazu but not Krüppel and knirps.  相似文献   

4.
5.
S Qian  M Capovilla    V Pirrotta 《The EMBO journal》1993,12(10):3865-3877
The core activity of the Ubx gene enhancer BRE (bx region enhancer) is encoded within a 500 bp module. bx DNA outside this active module increases the level of expression, expands the expression into ventro-lateral ectoderm and partially stabilizes the late expression pattern. The products of the gap genes hb and tll and of the pair-rule gene ftz bind to the 500 bp BRE module and control directly its initial pattern of expression. ftz enhances expression in even-numbered parasegments within the correct spatial domain whose boundaries are set by hb and tll. In addition, en and twi products activate the enhancer, probably directly. en broadens the parasegmental stripe while twi cooperates with ftz to enhance expression in the mesoderm. Binding sites for the five regulators are closely clustered, often overlapping extensively with one another. In vitro, hb blocks the binding of ftz and can also displace ftz protein pre-bound to an overlapping site, suggesting that competitive binding and/or interference by hb sets the initial boundaries of the domain of expression. Our results also suggest that this interaction is short-range and the long distance interactions among different enhancers may depend on each enhancer's ability to complex with the promoter.  相似文献   

6.
C S Chan  L Rastelli    V Pirrotta 《The EMBO journal》1994,13(11):2553-2564
Segmentation genes provide the signals for the activation and regulation of homeotic genes in Drosophila but cannot maintain the resulting pattern of expression because their activity ceases halfway through embryogenesis. Maintenance of the pattern is due to the Polycomb group of genes (Pc-G) and the trithorax group of genes (trx-G), responsible for the persistence of the active or repressed state of homeotic genes. We have identified a regulatory element in the Ubx gene that responds to Pc-G and trx-G genes. Transposons carrying this element create new binding sites for Pc-G products in the polytene chromosomes. This Pc-G maintenance element (PRE), establishes a repressive complex that keeps enhancers repressed in cells in which they were originally repressed and maintains this state through many cell divisions. The trx-G products stimulate the expression of enhancers in cells in which they were originally active. This mechanism is responsible for the correct regulation of imaginal disc enhancers, which lack themselves antero-posterior positional information. The PRE also causes severe variegation of the mini-white gene present in the transposon, a phenomenon very similar to heterochromatic position-effect variegation. The significance of this mechanism for homeotic gene regulation is discussed.  相似文献   

7.
8.
Chromatin insulators, or boundary elements, appear to control eukaryotic gene expression by regulating interactions between enhancers and promoters. Boundaries have been identified in the 3' cis-regulatory region of Abd-B, which is subdivided into a series of separate iab domains. Boundary elements such as Mcp, Fab-7, and Fab-8 and adjacent silencers flank the iab domains and restrict the activity of the iab enhancers. We have identified an insulator in the 755-bp Mcp fragment that is linked to the previously characterized Polycomb response element (PRE) and silences the adjacent genes. This insulator blocks the enhancers of the yellow and white genes and protects them from PRE-mediated repression. The interaction between the Mcp elements, each containing the insulator and PRE, allows the eye enhancer to activate the white promoter over the repressed yellow domain. The same level of white activation was observed when the Mcp element combined with the insulator alone was interposed between the eye enhancer and the promoter, suggesting that the insulator is responsible for the interaction between the Mcp elements.  相似文献   

9.
10.
We dissected an upstream control region (a BXD fragment) from the homeotic gene Ultrabithorax (Ubx) of Drosophila which confers a Ubx-like expression pattern in the embryonic ectoderm. We found several distinct enhancer elements spread through the whole BXD fragment each of which is active in transformed embryos, mediating a different pattern of beta-galactosidase expression in the ventral nerve cord. The strongest of these patterns mimics Ubx expression within the Ubx domain. This pattern is strictly dependent on Ubx function. Thus, the BXD control region contains a Ubx response element, suggesting that positive autoregulation of Ubx may occur in the central nervous system of the developing embryo.  相似文献   

11.
K. McCall  M. B. O''Connor    W. Bender 《Genetics》1994,138(2):387-399
Eight P elements carrying a β-galactosidase (lacZ) reporter have been mapped to sites within the Drosophila bithorax complex. The bithorax complex contains three homeotic genes, and at least nine regulatory regions which control their expression in successive parasegments of the fly. The enhancer traps inserted at the promoter of one of the genes, Ultrabithorax, express lacZ in patterns which mimic the Ultrabithorax protein pattern. Enhancer traps in the regulatory regions do not mimic the endogenous genes, but express lacZ globally in the relevant parasegments. Some P elements carry large DNA fragments upstream of the lacZ promoter but internal to the P element. In cases where these internal sequences specify a lacZ pattern, that pattern is generally suppressed when the element is inserted in the bithorax complex. In embryos mutant for genes of the Polycomb group, the lacZ expression from the enhancer traps spreads to all segments. Thus, the enhancer traps reveal parasegmental domains that are maintained by Polycomb-mediated repression. Such domains may be realized by parasegmental differences in chromatin structure.  相似文献   

12.
An elastase-human growth hormone (hGH) fusion gene containing 205 base pairs of elastase 5' flanking region is expressed exclusively in pancreatic acinar cells of transgenic mice. This paper shows that the promoter region (-72 to +8) and the enhancer (-205 to -73) function independently of each other. The elastase enhancer can activate the heterologous mouse metallothionein gene and the hGH gene promoters; conversely, enhancers from the thymocyte-specific murine leukemia virus MCF13 and the metal regulatory elements from the metallothionein gene can activate the elastase promoter in a variety of cell types. Combinations of immunoglobulin and elastase enhancers with a heterologous promoter and the hGH gene result in expression in all of the tissues predicted by the sum of each enhancer acting alone. Thus these enhancer elements act independently of each other, suggesting that they do not have silencing activity in cells in which they are normally inactive.  相似文献   

13.
14.
The Drosophila bithorax complex Abdominal-B (Abd-B) gene specifies parasegmental identity at the posterior end of the fly. The specific pattern of Abd-B expression in each parasegment (PS) determines its identity and, in PS10-13, Abd-B expression is controlled by four parasegment-specific cis-regulatory domains, iab-5 to iab-8, respectively. In order to properly determine parasegmental identity, these four cis-regulatory domains must function autonomously during both the initiation and maintenance phases of BX-C regulation. The studies reported here demonstrate that the (centromere) distal end of iab-7 domain is delimited by the Fab-8 boundary. Initiators that specify PS12 identity are located on the proximal iab-7 side of Fab-8, while initiators that specify PS13 identity are located on the distal side of Fab-8, in iab-8. We use transgene assays to demonstrate that Fab-8 has enhancer blocking activity and that it can insulate reporter constructs from the regulatory action of the iab-7 and iab-8 initiators. We also show that the Fab-8 boundary defines the realm of action of a nearby iab-8 Polycomb Response Element, preventing this element from ectopically silencing the adjacent domain. Finally, we demonstrate that the insulating activity of the Fab-8 boundary in BX-C is absolutely essential for the proper specification of parasegmental identity by the iab-7 and iab-8 cis-regulatory domains. Fab-8 together with the previously identified Fab-7 boundary delimit the first genetically defined higher order domain in a multicellular eukaryote.  相似文献   

15.
16.
17.
The three homeotic genes of the bithorax complex (BX-C), Ubx, abd-A and Abd-B control the identity of the posterior thorax and all abdominal segments. Large segment-specific cis-regulatory regions control the expression of Ubx, abd-A or Abd-B in each of the segments. These segment-specific cis-regulatory regions span the whole 300 kb of the BX-C and are arranged on the chromosome in the same order as the segments they specify. Experiments with lacZ reporter constructs revealed the existence of several types of regulatory elements in each of the cis-regulatory regions. These include initiation elements, maintenance elements, cell type- or tissue-specific enhancers, chromatin insulators and the promoter targeting sequence. In this paper, we extend the analysis of regulatory elements within the BX-C by describing a series of internal deficiencies that affect the Abd-B regulatory region. Many of the elements uncovered by these deficiencies are further verified in transgenic reporter assays. Our results highlight four key features of the iab-5, iab-6 and iab-7 cis-regulatory region of Abd-B. First, the whole Abd-B region is modular by nature and can be divided into discrete functional domains. Second, each domain seems to control specifically the level of Abd-B expression in only one parasegment. Third, each domain is itself modular and made up of a similar set of definable regulatory elements. And finally, the activity of each domain is absolutely dependent on the presence of an initiator element.  相似文献   

18.
J Müller  M Bienz 《The EMBO journal》1991,10(11):3147-3155
In an attempt to reconstruct the embryonic expression pattern of the homeotic gene Ultrabithorax (Ubx) by stable integration of fusion constructs, we identified three key control regions called PBX, ABX and BXD. Each of these confers an expression pattern mimicking certain aspects of Ubx expression. The PBX and ABX patterns are limited to the Ubx domain with anterior boundaries at parasegments 6 and 5. In contrast, the BXD pattern extends from head to tail. PBX or ABX expression boundaries are imposed on the BXD pattern, if PBX or ABX is linked to BXD. These boundaries, although not the PBX and ABX expression limits themselves, are dependent on Polycomb function. We conclude that PBX and ABX are recognized by repressors which act across large distances to suppress BXD activity. Stable and heritable Ubx expression boundaries are thus mediated by this process of long range repression.  相似文献   

19.
In wild-type Drosophila melanogaster larvae, the Ultrabithorax (Ubx) gene is expressed in the haltere imaginal discs but not in the majority of cells of the wing imaginal discs. Ectopic expression of the Ubx gene in wing discs can be elicited by the presence of Contrabithorax (Cbx) gain-of-function alleles of the Ubx gene or by loss-of-function mutations in Polycomb (Pc) or in other trans-regulatory genes which behave as repressors of Ubx gene activity. Several Ubx loss-of-function alleles cause the absence of detectable Ubx proteins (UBX) or the presence of truncated UBX lacking the homeodomain. We have compared adult wing phenotypes with larval wing disc UBX patterns in genotypes involving double mutant chromosomes carrying in cis one of those Ubx mutations and the Cbx1 mutation. We show that such double mutant genes are (1) active in the same cells in which the single mutant Cbx1 is expressed, although they are unable to yield functional proteins, and (2) able to induce ectopic expression of a normal homologous Ubx allele in a part of the cells in which the single mutant Cbx1 is active. That induction is conditional upon pairing of the homologous chromosomes (the phenomenon known as transvection), and it is not mediated by UBX. Depletion of Pc gene products by Pc3 mutation strongly enhances the induction phenomenon, as shown by (1) the increase of the number of wing disc cells in which induction of the homologous allele is detectable, and (2) the induction of not only a paired normal allele but also an unpaired one.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号