首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
P. Meerts  E. Garnier 《Oecologia》1996,108(3):438-445
Polygonum aviculare is an annual weedy species showing extensive genetic variation in seed and leaf size and colonizing various types of man-disturbed habitats. A growth analysis was conducted on 12 genotypes representative of three regimes of disturbance of natural habitat (trampling, weeding, and no disturbance in the course of the growing season), grown under productive conditions in order to test whether relative growth rate (RGR) varies at the intraspecific level and, if so, which growth parameters may explain its variation. RGR showed significant genotypic variation (0.355–0.452 g g-1 day-1), positively correlated with specific leaf area (SLA) and leaf mass ratio (LMR) and negatively correlated with unit leaf rate per unit leaf area (ULRA). Thus, the paramount importance of leaf area ratio (LAR=SLA×LMR) in determining growth rate variation between different herbaceous species is confirmed at the intraspecific level in this species. Genotypes originating from trampled habitats had smaller seeds and smaller leaves than genotypes from habitats subject to other disturbance regimes. Additionally, they showed a lower LAR, not entirely compensated for by a higher ULRA, which resulted in a positive allometric relationship between seed size and RGR. It is hypothesized that their lower SLA, correlated with a higher leaf dry matter content (possibly a consequence of a higher cell wall content per unit leaf area) and their lower LMR have been co-selected with small leaf size as adaptations promoting resistance to trampling stress. It is suggested that variation in cell size and/or gibberellin content might be the mediators of the correlation found between seed size, leaf size and growth parameters within this species.  相似文献   

2.
B. Muller  E. Garnier 《Oecologia》1990,84(4):513-518
Summary Two grass species, the annual Bromus sterilis and the perennial Bromus erectus, were grown from seeds for 28 days in a hydroponic culture system at 1 and 100 M NO3 - in the nutrient solution. At 100 M NO3 -, the relative growth rate (RGR) of the perennial was 30% lower than that of the annual. This was only the consequence of the higher specific mass of its leaves, since its leaf mass ratio was higher than that of the annual and the unit leaf rates (ULR), calculated on an area basis, were similar for the two species. At 1 M, the RGR of the annual was 50% lower than at 100 M, while that of the perennial was not significantly lower. This was due mainly to a lower ULR for the annual. while for the perennial ULR was the same in both treatments. These differences between the two species were all the more striking in that the differences in total nitrogen concentrations and nitrate reductase activities between the two treatments were very similar for both species. These different responses together with differences in the nitrogen productivity of the two species suggest that the level of nutrient availability may play an important role in the distribution of these Bromus species in natural habitats. Scope: Components of growth and response to nitrate availability in annual and perennial grasses  相似文献   

3.
Ma Z  Shi J  Wang G  He Z 《Genetica》2006,126(3):343-351
Growth within tree populations varies among individuals due to changes in biotic and abiotic factors. The degree of such variation, defined as growth inequality, serves as a useful indicator of the uniformity of growth within a population in response to the prevalent environmental conditions. By application of the Gini coefficient (G), an index for inequality, we characterized the early growth inequality of ninety crosses of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and their open-pollinated parental lines. Tree cumulative height was measured annually for 8 consecutive years. Both the crosses and parental lines exhibited temporal changes in growth inequality. The inequality of total height among the crosses decreased logarithmically with age by nearly 3-fold after 13 growing seasons, suggesting that tree height became less variable among the crosses as trees grew larger. Interestingly, the Lorenz asymmetry, an index reflecting the shape of the Lorenze curve from which G is derived, revealed that the inequality of annual height increment among the crosses resulted from an alternate contribution of the fast-growing and slow-growing trees. Among parental lines, two provenances with the smallest and the largest overall inequality in total height showed a similar pattern of changes in annual growth inequality, and the provenance differences were consistent over time. Compared to the other provinces, a local provenance exhibited less variation in total height among individual trees as reflected by a smaller value of inequality, and was better adapted to the field conditions. Our results demonstrated the sensitivity and usefulness of the Gini coefficient and Lorenz asymmetry for the analysis of growth inequality in non-natural populations. Growth inequality is a potentially useful evaluation criterion for early selection. Given comparable initial growth, provenances/families with lower growth inequality values would likely outperform those with higher growth inequality, and eventually tree size of the latter would be more variable due to greater variations among individual trees. Assessment of growth inequality at early ages will advance our understanding of variability of tree growth within a population, facilitate forest genetics improvement programs, and enhance the efficiency of tree breeding.  相似文献   

4.
BACKGROUND AND AIMS: Sub-arctic mountain birch Betula pubescens var. pumila communities in the North Atlantic region are of variable stature, ranging from prostrate scrubs to forests with trees up to 12 m high. Four hypotheses were tested, relating growth and population characteristics of sub-arctic birch woodland and scrub to tree stature; i.e. the variable stature of birch woods is due to differences in (1) the mean growth rate; (2) the age-related patterns of growth rate; (3) the life expectancy of stems; or (4) the tree form. Methods: A stratified random sample of 300 birch trees was drawn from the total population of indigenous birch woodlands and scrub in Iceland, yielding 286 valid sample genets. The population was divided into three sub-populations with dominant trees 0-2, 2-4 and 4-12 m tall, referred to as birch scrub, birch scrub-woodland and birch forest, respectively. KEY RESULTS: Trees in the scrub population were of more contorted growth form than birch in the scrub-woodland and forest populations. Mean growth rates, mean age and median life expectancies increased significantly with sub-population of greater tree stature. At the population level, annual increment and longevity of birch stems was apparently interrelated as the stems in vigorously growing birch sub-populations had a longer life expectancy than those of slower growth. However, no difference was observed between sub-populations in age-related patterns of extension growth rate. CONCLUSIONS: The results were consistent with hypotheses (1), (3) and (4), but hypothesis (2) was rejected. Hence, mountain birch of more vigorous growth attains a greater stature than birch of lesser increment due to faster extension growth rate and a longer lifespan. In addition, the more contorted stem form of scrub populations contributes to their low stature.  相似文献   

5.
The metabolic rate of roach in relation to body size and temperature   总被引:4,自引:0,他引:4  
Standard and routine metabolic rates of roach Rutilus rutilus for a wide size and temperature range (3–200 g, 5–23° C) were analysed by automated, computerized intermittent flow respirometry. The mass exponent b ranged from 0·68 to 0·82 for standard metabolism, and from 0·65 to 0·92 for routine metabolism depending on the experimental temperature. For routine metabolism b was lowest at 10° C. At both decreasing and increasing temperatures, b increased significantly. Roach were exponentially temperature-dependent for both metabolic levels. For roach <20 g, however, an asymptotic relationship was observed between temperature and routine metabolic rate. The 'flattening of the curve' in the latter case may be explained by reduced spontaneous activities at the lower threshold of the preferred temperature range.  相似文献   

6.
We examined separate and interactive effects of intraspecific competition, vertebrate browsing and substrate disturbance on the growth and size structure of pin cherry (Prunus pensylvanica L.) in the first two seasons of growth after clearcutting, in a hardwoods forest in New Hampshire, United States. Over the 15-month study period, 97.5% of 1801 individuals survived, and mean plant height increased from 4-fold at high density to 5-fold at low density. Relative height growth was significantly lower at higher plant densities in two of the three growth periods examined. Vertebrate browsers (moose and deer) significantly preferred taller plants. Browsed plants had higher relative height growth following browsing than unbrowsed plants (compensatory growth) at low and intermediate densities. The degree of compensation declined with density and compensation was not significant at the highest density level. At low and intermediate densities, plants browsed early in life regained height dominance through compensatory growth; they failed to regain dominance at high density. Because compensatory growth tended to offset the effects of size-selective browsing, there was no difference in the degree of size inequality between browsed and unbrowsed plots. However, size inequality increased with plant density. Substrate disturbance caused by logging had no significant effects on either relative height growth or size inequality. The slope of the relationship between relative height growth and initial height increased significantly with density and time, and was higher in unbrowsed than in browsed plots, suggesting that competition among plants was size-asymmetric. Despite the preference of browsers for large plants, there was a clear net growth advantage for plants of large initial size, when the effects of competition, browsing and compensatory growth were combined. The interactive effects of density and browsing demonstrate the importance of a multifactorial approach to the analysis of individual plant performance and population structure.  相似文献   

7.
Growth rate of four freshwater algae in relation to light and temperature   总被引:5,自引:1,他引:5  
Four algae of freshwater phytoplankton were studied in monospecific culture: Chlorella vulgaris, Fragilaria crotonensis, Staurastrum pingue and Synechocystis minima. Experiments were performed to determine the growth rate over a wide range of light intensities (5–800 µE m–2 s–1, 15/9 light/dark photoperiod) and temperatures (10–35 °C). The results provide a set of parameters (particularly the maximal growth rate associated to optimal conditions of light and temperature) for a three-equation model used to described the growth rate response of a non-nutrient-limited culture.  相似文献   

8.
SUMMARY 1. The changes in the vertical distributions of red coloured Planktothrix rubescens and green P. agardhii filaments in Blelham Tarn, English Lake District, were related to vertical profiles of temperature and light attenuation and to continuous records of the surface irradiance and windspeed, from August 1999 to October 2000. 2. The potential growth rate of each organism was calculated from the irradiance and temperature at 0.5 m depths and hourly intervals throughout the year, using algorithms determined from growth rates in culture. The analyses indicated that there was sufficient irradiance for growth, integrated over the 24‐h cycle, at depths down to the metalimnion where the Planktothrix populations stratified in summer. The compensation depth for growth by P. rubescens reached a maximum of 9.3 m in spring and midsummer, and fell to a minimum of 1.6 m in midwinter; the corresponding values for P. agardhii were 7.9 and 0.5 m. 3. The mixed depth (zm) exceeded the critical depth for growth (zb) by P. rubescens (the condition preventing population increase) on only 3 days of the year; for P. agardhii, however, zm exceeded zb on 31 days, contributing to its faster decline. The stratified population of P. rubescens was the major cause of light attenuation during the summer of 2000, and resulted in competitive exclusion of P. agardhii. 4. The calculated growth rates integrated over the depth of the water column in Blelham Tarn equalled, or exceeded, the measured changes of the populations during periods when they were increasing, during summer and autumn. Close agreement between the two values was found for much of the year when allowance was made for dilution of the lake population by rainfall over the watershed. During periods of rapid decline, of P. agardhii in September 1999, P. rubescens in December 1999 and both in July–August 2000, additional losses (e.g. by chytrid parasitism and grazing) are invoked.  相似文献   

9.
10.
Large and high nitrogen (N) concentration seedlings frequently have higher survival and growth in Mediterranean forest plantations than seedlings with the opposite traits, which has been linked to the production of deeper and larger root systems in the former type of seedlings. This study assessed the influence of seedling size and N concentration on root growth dynamics and its relation to shoot elongation in Aleppo pine (Pinus halepensis Mill.) seedlings. We cultivated seedlings that differed in size and tissue N concentration that were subsequently transplanted into transparent methacrylate tubes in the field. The number of roots, root depth, and the root and shoot elongation rate (length increase per unit time) were periodically measured for 10 weeks. At the end of the study, we also measured the twig water potential (ψ) and the mass of plant organs. New root mass at the end of the study increased with seedling size, which was linked to the production of a greater number of new roots of lower specific length rather than to higher elongation rate of individual roots. Neither plant size nor N concentration affected root depth. New root mass per leaf mass unit, shoot elongation rate, and pre-dawn ψ were reduced with reduction in seedling size, while mid-day ψ and the root relative growth rate were not affected by seedling size. N concentration had an additive effect on plant size on root growth but its overall effect was less important than seedling size. Shoot and roots had an antagonistic elongation pattern through time in small seedlings, indicating that the growth of both organs depressed each other and that they competed for the same resources. Antagonism between shoot and root elongation decreased with plant size, disappearing in large and medium seedlings, and it was independent of seedling N concentration. We conclude that root and shoot growth but not rooting depth increased with plant size and tissue N concentration in Aleppo pine seedlings. Since production of new roots is critical for the establishment of planted seedlings, higher absolute root growth in large seedlings may increase their transplanting performance relative to small seedlings. The lack of antagonism between root and shoot growth in large seedlings suggests that these plants can provide resources to sustain simultaneous growth of both organs.  相似文献   

11.
Rising CO2 is predicted to increase forest productivity, although the duration of the response and how it might be altered by variation in rainfall, temperature and other environmental variables are not well understood. We measured the basal area of rapidly growing Pinus taeda trees exposed to free‐air CO2 enrichment for 8 years and used these measurements to estimate monthly and annual growth. We used these measurements in a statistical model to estimate the start and end of growth in each year. Elevated CO2 increased the basal area increment (BAI) of trees by 13–27%. In most years, exposure to elevated CO2 increased the growth rate but not the duration of the active growth period. With the exception of 1 year following an extreme drought and a severe ice storm, BAI was positively correlated with the amount of rainfall during the active growth period. The interannual variation in the relative enhancement of BAI caused by elevated CO2 was strongly related to temperature and rainfall, and was greatest in years with high vapor pressure deficit. There was no evidence of a systematic reduction in the stimulation of growth during the first 8 years of this experiment, suggesting that the hypothesized limitation of the CO2 response caused by nitrogen availability has yet to occur.  相似文献   

12.
The influence of ontogeny, light environment and species on relationships of relative growth rate (RGR) to physiological and morphological traits were examined for first-year northern hardwood tree seedlings. Three Betulaceae species (Betula papyrifera, Betula alleghaniensis and Ostrya virginiana) were grown in high and low light and Quercus rubra and Acer saccharum were grown only in high light. Plant traits were determined at four ages: 41, 62, 83 and 104 days after germination. In high light (610 mol m–2 s–1 PPFD), across species and ages, RGR was positively related to the proportion of the plant in leaves (leaf weight ratio, LWR; leaf area ratio, LAR), in situ rates of average canopy net photosynthesis (A) per unit mass (Amass) and per unit area (Aarea), and rates of leaf, stem and root respiration. In low light (127 mol m–2 s–1 PPFD), RGR was not correlated with Amass and Aarea whereas RGR was positively correlated with LAR, LWR, and rates of root and stem respiration. RGR was negatively correlated with leaf mass per area in both high and low light. Across light levels, relationships of CO2 exchange and morphological characteristics with RGR were generally weaker than within light environments. Moreover, relationships were weaker for plant parameters containing a leaf area component (leaf mass per area, LAR and Aarea), than those that were solely mass-based (respiration rates, LWR and Amass). Across light environments, parameters incorporating the proportion of the plant in leaves and rates of photosynthesis explained a greater amount of variation in RGR (e.g. LWR*Amass, R2=0.64) than did any single parameter related to whole-plant carbon gain. RGR generally declined with age and mass, which were used as scalars of ontogeny. LWR (and LAR) also declined for seven of the eight species-light treatments and A declined in four of the five species in high light. Decreasing LWR and A with ontogeny may have been partially responsible for decreasing RGR. Declines in RGR were not due to increased respiration resulting from an increase in the proportion of solely respiring tissue (roots and stems). In general, although LWR declined with ontogeny, specific rates of leaf, stem, and root respiration also decreased. The net result was that whole-plant respiration rates per unit leaf mass decreased for all eight treatments. Identifying the major determinants of variation in growth (e.g. LWR*Amass) across light environments, species and ontogeny contributes to the establishment of a framework for exploring limits to productivity and the nature of ecological success as measured by growth. The generality of these relationships both across the sources of variation we explored here and across other sources of variation in RGR needs further study.  相似文献   

13.
The relationships between marine growth and survival, and smolt sizes were examined for white-spotted charr (Salvelinus leucomaenis) populations in the Nairo River, Rebun Island, off northern Hokkaido Island, and the Haraki River, southern Hokkaido Island, Japan. Smolts in the Haraki River were much larger in size than those in the Nairo River, despite being similar size among age cohorts and between the sexes in each population. From scale analyses, smolt size-specific growth rates and survival were estimated by utilizing both observed and back-calculated size-frequencies. Inverse correlations between specific growth rates at sea and smolt size were found in both populations. However, the expected size increments at a given size of smolts in the Haraki River were significantly larger than of those in the Nairo River. For both populations, there were no significant effects of smolt ages (2 to 5 or 6 years) on growth rates at sea. Larger smolts had a consistent survival advantage, although the degree of size-dependent survival function seemed to differ between populations. The results suggested that growth and survival of individuals at sea are determined ultimately by size-, rather than age-, dependent factors depending upon local environmental conditions, supporting the hypothesis of a threshold size for smolting within populations.  相似文献   

14.
We studied how the dominant factor affecting stem volume growth changes during stand development in a monoclonal stand of Cryptomeria japonica D. Don. Stem analysis was used to compare growth history of trees in an unthinned plot (closed canopy) and a thinned plot (open canopy). In the unthinned plot, the dominant factor affecting stem volume growth was basal area (BA) before canopy closure, whereas neighborhood competition index (CI) was the dominant factor after canopy closure. In contrast, the dominant factor affecting stem volume in the thinned plot was BA throughout stand development. Spearman’s rank correlation coefficient between BA and CI continued to increase after canopy closure and size rank among individuals became increasingly fixed. Our results indicated that stem volume growth shifts from size-dependent to competition-dependent growth at canopy closure. The apparent correlation between tree size and growth rate observed in many previous studies may be the result of competition-mediated positive feedback between size and growth.  相似文献   

15.
16.
17.
To study the effects of the growth rate of the hybridoma cell Mn12 on productivity, cell cycle, cell size, and shear sensitivity, six continuous cultures were run at dilution rate of 0.011, 0.021, 0.023, 0.030, 0.042, and 0.058 h(-1). This particular hybridoma cell appeared to be unstable in continuous culture with respect to specific productivity, as a sudden drop occurred after about 30 generations in continuous culture, accompanied by the appearance of two populations with respect to the cytoplasmic lgG content. The specific productivity increased with increasing growth rate. The shear sensitivity of the cell, as measured in a small air-lift loop reactor, increased with increasing growth rate. The mean relative cell size, as determined with a flow cytometer, increased with increasing growth rates. Furthermore, the fraction of cells in the S phase increased, and the fraction of cells in the G1/G0 phase decreased with increasing growth rates. (c) 1993 John Wiley & Sons, Inc.  相似文献   

18.
Neilsen  W.A.  Lynch  T. 《Plant and Soil》1998,202(2):295-307
Around the world large tracts of forest, previously available for production, have been reserved for nature conservation. This means that wood supply must be met from a reduced land base, including land of low productivity. In addition there are likely to be increasing demands on the use of managed forests for sequestering C as one means of reducing the build up of atmospheric CO2. One way for the forest industry to meet the demands of increased production would be through the use of fertilizers. Substantially increased growth from fertilizer N application has been measured in many cases while, in the northern hemisphere, atmospheric N deposition has been associated with increased growth in some forests.The possibility of using fertilizer N to increase growth, and the effect on the forest and soil, was studied in a research trial area in north-east Tasmania, Australia. Nitrogen was applied for 12 years to a 16 year old P. radiata stand in a low rainfall zone. Growth and foliar nutrient concentrations were measured to age 34 years, to determine change after attainment of steady state growth at age 25 years, and following cessation of fertilizing at age 29 years. Biomass sampling was carried out at ages 25 years, 29 years, and 34 years.Growth at the steady peak rate achieved in the fertilizer plots, of 31 m3 ha-1 periodic annual increment, was accompanied by changes in the N nutrient pools. Surface applied N built up in the surface litter layer while this layer was increasing, from 15 t ha-1 to nearly 50 t ha-1, and fertilizer was being applied between ages 25 and 29 years. Decline of total N in the soil, between ages 25 and 29 years, indicated continued uptake from that source even though fertilizer was being applied. Subsequent increases in soil N, through leaching from the litter layer, followed cessation of fertilizing.Following cessation of annual applications of N fertilizer, growth rates declined by less than 15% and remained substantially (>150%) above the control growth rates for 4 years. Over a 3 year period foliar N concentrations declined steadily, to the same as control plots, although mass of needles was not reduced 5 years after cessation of fertilizer applications and remained significantly above that of the control plots.Without fertilizers, N for new foliage must be supplied from internal recycling and from mineralization of litter and soil organic matter. There were net losses of N from the foliage and the wood, estimated at around 12 kg N ha-1 yr-1, for the fertilized trees for the 5 years following cessation of fertilizing. This indicated retention and recycling within the tree of a considerable proportion of the 104 kg N ha-1 in the foliage, at age 29 years. As rates of mineralization of soil N were likely to be low, this retention of N within the tree was important in maintaining growth rates.In the forest ecosystems investigated, with low initial content of soil organic matter and N, fertilizer N produced improved tree health and substantially increased growth, thus providing the opportunity to manage this forest for increased wood production or C sequestration. Although there was a substantial build up of N and C in the litter on the fertilized treatment, incorporation of N and C into the mineral soil was slow. Over 12 years 1.34 t N ha-1 had been applied, comparable to 40 years of atmospheric deposition at 30 kg N ha-1. There were no signs of detrimental effects from this application.  相似文献   

19.
悬浮培养红豆杉细胞活力及存活率与生长周期的关系   总被引:8,自引:0,他引:8  
刘华 《生物学杂志》2002,18(1):19-20
用TTC法制定红豆杉细胞活力,用中性红测细胞存活率,探讨生长周期中细胞活力及存活率的变化规律。结果显示延迟期细胞活力最强,对数生长期活力较低,稳定期活力最低;而细胞存活率在整个周期中基本保持在70%-80%。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号