首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beat-by-beat changes in atrioventricular (AV) conduction evoked by constant frequency and phase-coupled vagal stimulation were examined both qualitatively and quantitatively in 13 anesthetized dogs. The effects of pacing cycle length and sympathetic activity on the vagally induced phasic changes in AV conduction were also characterized. When the vagal stimulus interval was nearly equal to the pacing cycle length and the vagal stimulus moved progressively through the cardiac cycle, AV interval oscillated in a rhythmic fashion. The rhythmicity of the vagally induced AV interval oscillations was altered substantially by changes in either the vagal stimulus interval or the pacing cycle length. The vagally induced AV interval oscillations were abolished during phase-coupled vagal stimulation; however, the magnitude of the resultant steady-state AV interval depended on the time relative to the phase of the cardiac cycle that the vagal stimulus was delivered. In the presence or absence of sympathetic stimulation, a vagal stimulus falling approximately 200 ms prior to atrial depolarization evoked the greatest prolongation in AV interval, regardless of the pacing cycle length. Additionally, the effects of combined sympathetic and phase-dependent vagal stimulation on the AV interval were additive. These data confirm that the influence of a vagal stimulus on AV interval can be predicted from the phase in the cardiac cycle that the vagal stimulus is delivered. Moreover, this phase dependency of vagal effects evokes marked qualitative variations in AV interval response patterns when either the vagal stimulus interval or the pacing cycle length is altered.  相似文献   

2.
Hydrolysis, synthesis, and release of acetylcholine in the isolated heart   总被引:1,自引:0,他引:1  
The occurrence of unhydrolyzed acetylcholine (ACh) in the cardiac perfusate during vagal stimulation in the absence of cholinesterase inhibition has been demonstrated by several methods. Because some ACh was found unhydrolyzed in the extracellular space for several seconds after vagal stimulation (half-time of decay 2.5 s), it appears that the prolonged time course of the cardiac responses to bursts of vagal activity is determined by a slow rate of transmitter inactivation (diffusion plus hydrolysis) in addition to slowly operating postsynaptic mechanisms mediated by activation of the muscarinic receptor. The neuronal uptake of choline in isolated heart preparations was found to be Na+ dependent, sensitive to hemicholinium 3, and activated by vagal stimulation. Activation occurred after a delay of 1 or 2 min and slowly faded within 5 min after stimulation. Resting release of ACh was insensitive to extracellular Ca2+ and to muscarinic feedback inhibition, in contrast to the evoked transmitter release. Inasmuch as atropine increased ACh release by vagal and field stimulation to the same extent, muscarinic feedback inhibition is likely to occur at postganglionic parasympathetic neurons. Adrenergic agonists and propranolol did not significantly change the release of ACh.  相似文献   

3.
A brief electrical stimulation of the vagus nerve may elicit a triphasic response comprising (i) an initial prolongation of the same or the next cardiac cycle, (ii) a return of the subsequent cardiac cycle to about the level prior to vagal stimulation, and (iii) a secondary prolongation of cardiac cycle length that lasts several beats. We compared the effects of two calcium channel antagonists, verapamil and nifedipine, on this triphasic response to vagal stimulation in chloralose-anesthetized, open-chest dogs. In the absence of vagal stimulation, nifedipine (doses of 10, 40, and 50 micrograms/kg for a total dose of 100 micrograms/kg, i.v.) and verapamil (two doses of 100 micrograms/kg each, i.v.) increased the cardiac cycle length (A-A interval) by 16% (429 +/- 20 to 496 +/- 21 ms) and 29% (470 +/- 33 to 605 +/- 54 ms), respectively. Nifedipine (100 micrograms/kg total) attenuated the initial vagally mediated prolongation of the A-A interval, from 474 +/- 19 to 369 +/- 42 ms above the basal A-A interval. Following the initial prolongation of the vagal effect, other A-A intervals were not affected. In contrast, verapamil potentiated the vagally mediated initial prolongation in cardiac cycle length at the first dose administered (100 micrograms/kg) from 492 +/- 17 to 561 +/- 14 ms, but other increases in dosages had no further effect. Thus these two calcium channel antagonists have different effects on the sinoatrial chronotropic responses caused by brief vagal stimulation.  相似文献   

4.
The role of the vagus nerve in determining heart rate (f H) and cardiorespiratory interactions was investigated in a neotropical fish, Piaractus mesopotamicus. During progressive hypoxia f H initially increased, establishing a 1:1 ratio with ventilation rate (f R). Subsequently there was a hypoxic bradycardia. Injection of atropine abolished a normoxic inhibitory tonus on the heart and the f H adjustments during progressive hypoxia, confirming that they are imposed by efferent parasympathetic inputs via the vagus nerve. Efferent activity recorded from the cardiac vagus in lightly anesthetized normoxic fish included occasional bursts of activity related to spontaneous changes in ventilation amplitude, which increased the cardiac interval. Restricting the flow of aerated water irrigating the gills resulted in increased respiratory effort and bursts of respiration-related activity in the cardiac vagus that seemed to cause f H to couple with f R. Cell bodies of cardiac vagal pre-ganglionic neurons were located in two distinct groups within the dorsal vagal motor column having an overlapping distribution with respiratory motor-neurons. A small proportion of cardiac vagal pre-ganglionic neurons (2%) was in scattered positions in the ventrolateral medulla. This division of cardiac vagal pre-ganglionic neurons into distinct motor groups may relate to their functional roles in determining cardiorespiratory interactions.  相似文献   

5.
E K Potter  D I McCloskey 《Peptides》1991,12(4):805-808
In anesthetized dogs intravenous injection of neuropeptide Y (NPY) or stimulation of the cardiac sympathetic nerve is followed by a period of attenuation of vagal action at the heart lasting from many minutes to over an hour. Peptide YY (PYY), a related peptide (but one not reported to occur in the heart or its autonomic innervation), also inhibits cardiac vagal action but is more powerful and has a longer duration action. In 5 of 9 dogs, cardiac sympathetic nerve stimulation inhibited vagal action on the heart in control conditions, but relieved preexisting inhibition when repeated in the presence of PYY. In 3 dogs, exogenous NPY inhibited cardiac vagal action in control conditions, but failed to augment preexisting inhibition in the presence of PYY. An explanation offered for these results is that when PYY is occupying receptors on vagal nerve terminals, nerve-released NPY or exogenous NPY is either unable to produce an effect, because it cannot gain access to the receptors, or displaces PYY from at least some receptors and, being less powerful than PYY in its inhibitory action, lessens the preexisting vagal attenuation. The results reported are consistent with the proposal that the factor released from the sympathetic nerves following their stimulation and which is responsible for cardiac vagal inhibition is NPY.  相似文献   

6.
Objective: Rats with ventromedial hypothalamic lesion (VMH) are massively obese with endogenous hyperinsulinemia, insulin resistance, low sympathetic activity, and high parasympathetic activity, which are likely to induce hypertension. The goal was to follow in this model the long‐term hemodynamic changes and to investigate the role of autonomic nervous system and insulin resistance in these changes. Research Metho ds and Procedures: Heart rate and blood pressure were monitored for 12 weeks after operation using a telemetric system in VMH and sham rats. Plasma catecholamines and heart β‐adrenoceptors were measured. Glucose tolerance was studied after an intravenous glucose injection and insulin sensitivity during a euglycemic hyperinsulinemic clamp test. Results: A marked bradycardia and only a mild increase in blood pressure occurred in VMH rats compared with sham animals. Response to autonomic‐acting drugs showed an increase in heart vagal tone and responsiveness to a β‐agonist drug. Plasma catecholamine levels were markedly increased, and the density and affinity of heart β‐adrenoceptors were similar in VMH, sham, and control rats. Muscle glucose use was reduced by 1 week after operation in VMH animals. Discussion: These results show the following in this model of massively obese rats with sympathetic impairment: 1) adrenal medulla secretion is increased, probably as a result of hyperinsulinemia and increased vagal activity; 2) cardiac responsiveness to β‐agonist stimulation is increased; and 3) despite these changes and suspected resistance to the vasodilative effect of insulin, blood pressure does not increase. We conclude that high vagal activity may be protective against hypertension associated with obesity.  相似文献   

7.
In 11 anesthetized dogs placed under extracorporeal circulation, the vagal feedback was tested by electrical stimulation of the vagus nerves with cold block of their caudal part and by passive lung hyperinflation. The apneic response to such vagal stimulation progressively disappeared during expiratory threshold load breathing but then returned to control values some minutes after the load was removed. This suppression of the inhibitory response to stimulation of the vagus nerves was usually observed when vagal afferents were intact or blocked by cold. However, it was not observed whether no evoked activity continued in expiratory muscles after the cold block, or after suppression of all proprioceptive muscular afferents after transection of the spinal cord at C6 level. These results strongly suggest that enhancement of proprioceptive inputs to the respiratory centers counteracts the vagally mediated inspiratory "off-switch" mechanisms.  相似文献   

8.
The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.  相似文献   

9.
The cardiac responses to sympathetic nerve stimulation were measured in a series of open-chest, anesthetized dogs. In half the animals, the hearts were in a sinus rhythm; in the remaining animals, the hearts were in an atrioventricular (AV) junctional rhythm. Cocaine markedly prolonged the decay times of the chronotropic responses after cessation of sympathetic stimulation, regardless of the type of rhythm. The decay times of the inotropic responses were only slightly prolonged by cocaine in animals with a sinus rhythm, but the prolongations were pronounced in animals with an AV junctional rhythm. The lower basal heart rate appeared to be more responsible for the greater decay times of the inotropic responses in the animals with an AV junctional rhythm than in those with a sinus rhythm. In a second series of dogs, complete heart block was produced, cocaine was given, AND the hearts were paced at four different frequencies. The mean decay time of the inotropic response to sympathetic stimulation varied inversely AND substantially with the pacing frequency. The change in contraction frequency probably affects the rate of neurotransmitter dissipation from the ventricular myocardium, by altering either the coronary blood flow or the massaging action of the cardiac contractions.  相似文献   

10.
The effects of naloxone, an opiate antagonist, on basal and vagus nerve-induced secretions of GRP, gastrin, and somatostatin were examined using the isolated perfused rat stomach prepared with vagal innervation. Naloxone (10(-6) M) significantly inhibited basal somatostatin secretion in the presence and absence of atropine and of hexamethonium, whereas basal GRP and gastrin secretion was not affected by naloxone. Electrical stimulation (10 Hz, lms duration, 10V) of the distal end of the subdiaphragmatic vagal trunks elicited a significant increase in both GRP and gastrin but a decrease in somatostatin. Naloxone (10(-6) M) failed to affect these responses in the presence or absence of atropine. On the other hand, when hexamethonium was infused, naloxone significantly inhibited both the GRP and gastrin responses to electrical vagal stimulation. Somatostatin secretion was unchanged by vagal stimulation during the infusion of hexamethonium with or without naloxone. These findings suggest that basal somatostatin secretion is under the control of an opiate neuron and that opioid peptides might be involved in vagal regulation of GRP and gastrin secretion.  相似文献   

11.
K Hogan  F Markos 《Nitric oxide》2007,16(1):110-117
We investigated whether vagal cardiac cholinergic facilitation by nitric oxide (NO) is mediated by cardiac muscarinic receptor subtypes in the vagally innervated rat right atrium in vitro. Experiments were carried out in the presence of atenolol (4 microM). The right vagus was stimulated at 4, 8, 16, 32 Hz; pulse duration 1 ms at 20 V for 20s; vagal postganglionic activation was achieved using nicotine (0.1, 0.3, 0.5, 1mM) and the effect on cardiac interval (ms) assessed. Pirenzepine (1 microM), a M1 antagonist, attenuated vagally induced increase in cardiac interval. L-Arginine (0.34 mM) superfused with pirenzepine failed to reverse this attenuation, however, L-arginine applied alone reversed the reduction vagal cardiac slowing. Similarly, sodium nitroprusside (10 microM) applied alone, and not together with pirenzepine, was able to reverse the attenuation of vagal effects caused by pirenzepine. Synthetic MT7 (1 nM) toxin, a selective M1 antagonist confirmed these results. M3 antagonism using para-fluorohexahydrosiladifenidol (p-F-HHSiD) (300 nM) and M4 antagonism with PD 102807 (200 nM) did not affect the vagally induced increase in cardiac interval. Nicotine induced increase in cardiac interval was not altered by pirenzepine. These results show that antagonism of M1 receptors on cardiac vagal preganglionic fibres reduces vagal efficacy which can be recovered by either a nitric oxide synthase substrate or a NO donor.  相似文献   

12.
Despite the importance of vagal control over the ventricle, little is known regarding vagal efferent conduction and nerve terminal function in the postischemic myocardium. To elucidate postischemic changes in the cardiac vagal efferent neuronal function, we measured myocardial interstitial acetylcholine (ACh) levels by using in vivo cardiac microdialysis and examined the ACh responses to electrical stimulation of the vagi or local administration of ouabain in anesthetized cats. Sixty-minute occlusions of the left anterior descending coronary artery (LAD) followed by 60-min reperfusion abolished electrical stimulation-induced ACh release (20.4 +/- 3.9 vs. 0.9 +/- 0.4 nmol/l; means +/- SE, P < 0.01). In different groups of animals, 60-min LAD occlusion followed by 60-min reperfusion decreased but did not completely abolish ouabain-induced release of ACh (9.2 +/- 1.8 vs. 3.9 +/- 0.7 nmol/l; P < 0.05). These results indicate that function of the vagal efferent axon was completely interrupted, whereas the local ACh release was partially suppressed in the postischemic myocardium. The postischemic disruption of vagal efferent neuronal function might exert deleterious effects on cardiac regulation.  相似文献   

13.
Objective: We studied the effect of weight reduction on cardiac parasympathetic activity (PSA) in obese women. We also studied the relationship between the changes of PSA, resting energy expenditure (REE), and major cardiovascular risk factors. Research Methods and Procedures: Changes of cardiac vagal tone, an index of PSA, REE, and major cardiovascular risk factors, were measured in 52 healthy obese women after a 6‐month weight reduction. Ten of the women were remeasured at 12 and 24 months. Cardiac vagal tone was assessed by a vagal tone monitor and REE by indirect calorimeter. Results: Cardiac vagal tone increased significantly (p = 0.046), averaging a 9.5% weight loss in 6 months. The vagal tone increased further with weight loss during the following 6 months, and thereafter, it declined with weight regain. The increase of cardiac vagal tone correlated significantly with decreases of body weight, fat mass, waist circumference, serum insulin, and heart rate. REE adjusted for fat‐free mass and age did not change with weight loss and was not related to cardiac vagal tone at any time‐point. Discussion: Cardiac PSA activity increases with weight loss in obese women. This increase may not be maintained long‐term if body weight is regained. The rise of cardiac PSA is correlated with decreases of body fat mass, abdominal fat, serum insulin, and heart rate. Cardiac PSA is not related to REE.  相似文献   

14.
The effects of electrical stimulation of the vagi on gas transport mediated by high-frequency, low tidal volume ventilation (HFV) was examined in 10 anesthetized, paralyzed, propranolol-treated dogs. Gas transport efficiency was estimated by measuring the rate of CO2 removed from the lungs (Vco2) achieved during 45-s bursts of HFV applied before (control 1), during, and after (control 2) electrical stimulation of the transected vagi. During vagal stimulation the heart rate was maintained by electrical pacing. During the 15-s phase of vagal stimulation pulmonary impedance increased from 3.6 +/- 0.7 to 6.2 +/- 2.2 cmH2O X l-1 X s, and Vco2 increased. When the electrical stimulation of the vagi was stopped, impedance and Vco2 returned to prestimulation values. Vco2 was always higher during electrical stimulation of the vagi when HFV of a fixed volume was applied over a range of frequencies or when a fixed oscillation frequency was used over a range of tidal volumes. The effects of vagal stimulation on HFV-mediated gas transport were quite similar to the effects of moving the locations of the bias flow inlet and outlet into the lung such that tracheal volume was decreased by 20 ml, an amount equivalent to estimated change in control airway volume thought to occur during vagal stimulation. We simulated the effects of vagal stimulation and decreased tracheal volume on Vco2 by using a previously described model of HFV-mediated gas transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of hypercapnia and hypocapnia on the activities of the cardiac and pulmonary vagal single fibers were examined in the decerebrated, unanesthetized, paralyzed, and vagotomized cats. The animals breathed 100% O2. Fractional end tidal CO2 concentration was raised to 9% by adding CO2 into the O2 inlet. Average discharge rate of efferent cardiac vagal units (n=10) increased from 1.0+/-0.3 to 2.2+/-0.3 Hz. Hypocapnia apnea was produced by hyperventilation. Activities of cardiac vagal units tested (n = 4) showed dramatic decrease (0.1+/-0.0 Hz). Mean arterial blood pressure did not change significantly under these conditions. In contrast, only instantaneous firing rate during inspiration was significantly increased for efferent pulmonary vagal units (n = 11) during hypercapnia. The activities of the 3 pulmonary vagal units tested with hypocapnia decreased significantly. We concluded that cardiac and pulmonary vagal neurons were excited by chemoreceptor input.  相似文献   

16.
Vasoactive intestinal polypeptide (VIP) is implicated in the modulation of vagal effects on the heart rate. In this study, the impact of acute and chronic atropine administration on VIP levels in rat heart atria was investigated in relation to heart rate in the course of vagus nerves stimulation. Anaesthetised control and atropinised (10 mg/kg/day for 10 days) rats pretreated with metipranolol and phentolamine that were either given or not a single dose of atropine were subjected to bilateral vagus nerve stimulation (30 min: 0.7 mA, 20 Hz, 0.2 ms). VIP concentrations in the atria were determined after each stimulation protocol. In control rats with or without single atropine administration, the heart rate upon vagal stimulation was higher than in atropinised animals with or without single atropine dose, respectively. VIP concentrations in the control atria were significantly decreased after the stimulation; the decrease was comparable both in the absence and presence of a single dose of atropine. Compared to controls, VIP levels were significantly decreased after chronic atropine treatment and they were not further reduced by vagal stimulation and single atropine administration. Administration of VIP antagonist completely abolished the differences in the heart rate upon vagal stimulation between control and atropinised groups. In conclusion, the data indicate that chronic atropine administration affects VIP synthesis in rat heart atria and consequently it modifies the heart rate regulation.  相似文献   

17.
In order to distinguish the effects of beta-receptor stimulation on the ECG from other factors during short-term adjustment to hypoxic aerohypoxia, the ECG of 19 volunteers were compared during moderately acute, stepwise exposure to high altitude (6,000 m) in a low pressure chamber, once with and once without beta-receptor blockade (propranolol), and after isoprenaline inhalation at ground level. The results show that beta-receptor stimulation accounts mainly for most ECG changes during altitude exposure, i.e., for the shortening of R-R interval, the lengthening of Q-T and in particular for the ST-T flattening, the latter therefore being only an indirect sign of hypoxia. After exclusion of the catecholamines, the minor but still significant ECG changes at altitude (shortening of R-R interval, increase of P wave, prolongation of P-Q, deviation of the R vector, T wave flattening in the left precordial leads) may be attributed to other, so far undefined factors, such as cardiac hypoxia, vagal withdrawal, or increase of pulmonary resistance.  相似文献   

18.
Depressed parasympathetic tone is associated with an increased risk of sudden cardiac death. Exercise and the postexercise recovery period, which are associated with parasympathetic withdrawal, are high risk periods for sudden death. However, parasympathetic effects on cardiac electrophysiology during exercise and recovery have not been described. Electrophysiology studies were performed using noninvasive programmed stimulation (NIPS) in nine subjects (age 59 +/- 18 yr) with implanted dual-chamber devices and normal left ventricular function during multiple bicycle exercise sessions. NIPS was performed at rest, during exercise, and in the early recovery period both before and after parasympathetic blockade with atropine. Parasympathetic effect was defined as the value of the parameter of interest in the absence of atropine minus the value of the parameter in the presence of atropine. During exercise, sinus cycle length, atrioventricular (AV) block cycle length, AV interval, and ventricular effective refractory period shortened; in recovery, the values were intermediate between the rest and exercise values (P < 0.0001 by ANOVA). Parasympathetic effects on sinus cycle length, AV block cycle length, AV interval, and ventricular effective refractory period were 247 +/- 140, 58 +/- 20, 76 +/- 20, and 8.6 +/- 7.5 ms at rest, 106 +/- 20, 37 +/- 14, 24 +/- 13, and 2.6 +/- 7.8 ms during exercise, and 209 +/- 114, 50 +/- 23, 35 +/- 21, and 9.5 +/- 11.8 ms during recovery, respectively. There was poor correlation among the parasympathetic effects noted at the sinus node, AV node, and ventricle. Further work evaluating parasympathetic effects on cardiac electrophysiology during exercise and recovery in patients with heart disease is required to elucidate its role in modulating the risk of sudden cardiac death noted at these times.  相似文献   

19.
Complex sympathovagal interactions govern heart rate (HR). Activation of the postjunctional beta-adrenergic receptors on the sinus nodal cells augments the HR response to vagal stimulation, whereas exogenous activation of the presynaptic alpha-adrenergic receptors on the vagal nerve terminals attenuates vagal control of HR. Whether the alpha-adrenergic mechanism associated with cardiac postganglionic sympathetic nerve activation plays a significant role in modulation of the dynamic vagal control of HR remains unknown. The right vagal nerve was stimulated in seven anesthetized rabbits that had undergone sinoaortic denervation and vagotomy according to a binary white-noise signal (0-10 Hz) for 10 min; subsequently, the transfer function from vagal stimulation to HR was estimated. The effects of beta-adrenergic blockade with propranolol (1 mg/kg i.v.) and the combined effects of beta-adrenergic blockade and tonic cardiac sympathetic nerve stimulation at 5 Hz were examined. The transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with pure delay. beta-Adrenergic blockade decreased the dynamic gain from 6.0 +/- 0.4 to 3.7 +/- 0.6 beats x min(-1) x Hz(-1) (P < 0.01) with no alteration of the corner frequency or pure delay. Under beta-adrenergic blockade conditions, tonic sympathetic stimulation did not further change the dynamic gain (3.8 +/- 0.5 beats x min(-1) x Hz(-1)). In conclusion, cardiac postganglionic sympathetic nerve stimulation did not affect the dynamic HR response to vagal stimulation via the alpha-adrenergic mechanism.  相似文献   

20.
To characterize the neural pathways involved in lower esophageal sphincter relaxation, intraluminal pressures from the lower esophageal sphincter of the opossum were monitored during swallowing, vagal efferent nerve stimulation, and intraluminal balloon distention in the presence and absence of pharmacologic antagonism of putative neurotransmitters. The combination of atropine, hexamethonium, and 5-methoxydimethyltryptamine, which is known to block ganglionic transmission in the vagal inhibitory pathway to the lower esophageal sphincter, significantly antagonized LES relaxation induced by both swallowing and vagal stimulation, but did not affect the LES relaxation induced by balloon distention. Administration of the nitric oxide synthase inhibitor N omega nitro-L-arginine methyl ester, on the other hand, markedly inhibited LES relaxation induced by vagal stimulation, swallowing, and balloon distention, and this effect was reversed by administration of the nitric oxide synthase substrate L-arginine. These studies indicate that the distension-induced intramural pathway mediating LES relaxation does not involve ganglionic transmission similar to that of the vagal inhibitory pathway to the LES. However, the LES relaxation induced by all forms of stimuli appears to depend on nitric oxide as a final mediator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号