首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY: The photosynthetic specialization of crassulacean acid metabolism (CAM) has evolved many times in response to selective pressures imposed by water limitation. Integration of circadian and metabolite control over nocturnal C? and daytime C? carboxylation processes in CAM plants provides plasticity for optimizing carbon gain and water use by extending or curtailing the period of net CO? uptake over any 24-h period. Photosynthetic plasticity underpins the ecological diversity of CAM species and contributes to the potential for high biomass production in water-limited habitats. Perceived evolutionary constraints on the dynamic range of CO? acquisition strategies in CAM species can be reconciled with functional anatomical requirements and the metabolic costs of maintaining the enzymatic machinery required for C? and C? carboxylation processes. Succulence is highlighted as a key trait for maximizing biomass productivity in water-limited habitats by serving to buffer water availability, by maximizing the magnitude of nocturnal CO? uptake and by extending the duration of C? carboxylation beyond the night period. Examples are discussed where an understanding of the diverse metabolic and ecological manifestations of CAM can be exploited for the sustainable productivity of economically and ecologically important species.  相似文献   

2.
Immediately after unfolding, cotyledons of the tropical platyopuntoid cactus, Opuntia elatior Mill., exhibited a C(3)-type diel CO(2) exchange pattern characterized by net CO(2) uptake in the light. Significant nocturnal increases in titratable acidity typical of crassulacean acid metabolism (CAM) were not detected at this early developmental stage. As cotyledons matured and the first cladode (flattened stem) developed, features of CAM were observed and the magnitude of CAM increased. Nonetheless, in well-watered seedlings up to 10 cm tall, C(3) photosynthetic CO(2) fixation in the light remained the major pathway of carbon fixation. Reduced soil water availability led to an up-regulation of net dark CO(2) fixation and greater nocturnal increases in tissue acidity, consistent with facultative CAM. These observations demonstrate that C(3) photosynthesis, drought-stress-related facultative CAM, and developmentally controlled constitutive CAM can all contribute to the early growth of O. elatior. The strong C(3) component and facultative CAM features expressed in young O. elatior contrast with mature plants in which obligate CAM is the major pathway of carbon acquisition.  相似文献   

3.
The induction of CAM in Pedilanthus tithymaloides (Euphorbiaceae) under water-limited conditions was evaluated by following diurnal oscillations of CO2 fixation, titratable acidity and malic acid content in the leaf extracts. CAM induction was assessed by measuring the activities of phosphoenolpyruvate carboxylase (PEPC), NADH-malate dehydrogenase (MDH) and phosphoenolpyruvate caroxykinase (PEPCK) in the leaves as well. Drought resulted in large increases in the nocturnal acid accumulation and rates of CO2 uptake in the leaves of P. tithymaloides. The drought-induced CAM activity tended to be reversible after re-watering. Nevertheless, under well-watered conditions, plants of P. tithymaloides showed day time CO2 uptake patterns with less pronounced diurnal oscillations of organic acids. Our data indicate that although P. tithymaloides is a CAM plant, environmental variables like drought induce photosynthetic flexibility in this species. This type of plasticity in CAM and metabolic versatility in P. tithymaloides should be an adaptation for prolonged survival under natural adverse edaphic and microclimate situations.  相似文献   

4.
The C(4) succulent plant Portulaca oleracea shifts its photosynthetic metabolism to crassulacean acid metabolism (CAM) after 23 d of withholding water. This is accounted by diurnal acid fluctuation, net nocturnal but not day CO(2) uptake and drastic changes in phosphoenolpyruvate carboxylase (PEPC) kinetic and regulatory properties [Lara et al. (2003) Photosynth: Res. 77: 241]. The goal of the present work was to characterize the CAM activity in leaves of P. oleracea during water stress through the study of enzymes involved in carbon fixation and carbohydrate metabolism. After drought stress, a general decrease in the photosynthetic metabolism, as accounted by the decrease in the net CO(2) fixation and in the activity of enzymes such as ribulose-1,5-bisphosphate carboxylase/oxygenase, PEPC, pyruvate orthophosphate dikinase, phosphoenolpyruvate carboxykinase and NAD-malic enzyme was observed. We also found changes in the day/night activities and level of immunoreactive protein of some of these enzymes which were correlated to night CO(2) fixation, as occurs under CAM metabolism. Based on the results obtained, including those from in situ immunolocalization studies, we propose a scheme for the possible CO(2) fixation pathways used by P. oleracea under conditions of sufficient and limiting water supply.  相似文献   

5.
Phenotypic plasticity is thought to be a major mechanism allowing sessile organisms such as plants to adapt to environmental heterogeneity. However, the adaptive value of many common plastic responses has not been tested by linking these responses to fitness. Even when plasticity is adaptive, costs of plasticity, such as the energy necessary to maintain regulatory pathways for plastic responses, may constrain its evolution. We used a greenhouse experiment to test whether plastic physiological responses to soil water availability (wet vs. dry conditions) were adaptive and/or costly in the congeneric wildflowers Lobelia cardinalis and L. siphilitica. Eight physiological traits related to carbon and water uptake were measured. Specific leaf area (SLA), photosynthetic rate (A), stomatal conductance (gs), and photosynthetic capacity (Amax) responded plastically to soil water availability in L. cardinalis. Plasticity in Amax was maladaptive, plasticity in A and g(s) was adaptive, and plasticity in SLA was adaptively neutral. The nature of adaptive plasticity in L. cardinalis, however, differed from previous studies. Lobelia cardinalis plants with more conservative water use, characterized by lower g(s), did not have higher fitness under drought conditions. Instead, well-watered L. cardinalis that had higher g(s) had higher fitness. Only Amax responded plastically to drought in L. siphilitica, and this response was adaptively neutral. We detected no costs of plasticity for any physiological trait in either L. cardinalis or L. siphilitica, suggesting that the evolution of plasticity in these traits would not be constrained by costs. Physiological responses to drought in plants are presumed to be adaptive, but our data suggest that much of this plasticity can be adaptively neutral or maladaptive.  相似文献   

6.
Abstract

Ecological aspects of C3, C4 and CAM photosynthetic pathways. - Three different photosynthetic CO2 fixation pathways are known to occur in higher plants. However all three pathways ultimately depend on the Calvin-Benson cycle for carbon reduction. The oxygenase activity of RuBP carboxilase is responsible for photorespiratory CO2 release. Both C4 and CAM pathways behave as a CO2 concentrating mechanism which prevent photorespiration. The CO2-concentrating mechanism in C4 plants is based on intracellular symplastic transport of C4 dicarboxylic acids from mesophyll-cells to the adjacent bundle-sheath cells. On the contrary in CAM plants the CO2-concentrating mechanism is based on the intracellular transport of malic acid into and out of the vacuole.

The C4 photosynthetic pathway as compared to the C3 pathway permits higher rates of CO2 fixation in high light and high temperature environments at low costs in terms of water loss, given the stability of the photosynthetic apparatus under such conditions.

CAM is interpreted as an adaptation to arid environments because it enables carbon assimilation to take place at very low water costs during the night when the evaporative demand is low. Nevertheless many aquatic species of Isoetes and some relatives are CAM, suggesting the adaptive role of CAM to environments which become depleted in CO2.

The photosynthetic carbon fixation pathway certainly contributes to the ecological success of plants in different environments. However the distribution of plants may also reflect their biological history. On the other hand plants with different photosynthetic pathways coexist in many communities and tend to share resources in time. In any case some generalizations are possible: C4 plants enjoy an ecological advantage in hot, moist, high light regions while the majority of species in desert environments are C3; CAM plants are more frequent in semiarid regions with seasonal rainfall, coastal fog deserts, and in epiphytic habitats in tropical rain forests.  相似文献   

7.
The convergent quantum yield hypothesis (CQY) assumes that thermodynamics and natural selection jointly limit variation in the maximum energetic efficiency of photosynthesis in low light under otherwise specified conditions (e.g. temperature and CO(2) concentration). A literature survey of photosynthetic quantum yield (phi) studies in terrestrial plants from C(3), C(4), and CAM photosynthetic types was conducted to test the CQY hypothesis. Broad variation in phi values from C(3) plants could partially be explained by accounting for whether the measuring conditions were permissive or restrictive for photorespiration. Assimilatory quotients (AQ), calculated from the CO(2) phi:O(2) phi ratios, indicated that 49% and 29% of absorbed light energy was allocated to carbon fixation and photorespiration in C(3) plants, respectively. The unexplained remainder (22%) may represent diversion to various other energy-demanding processes (e.g. starch synthesis, nitrogen assimilation). Individual and cumulative effects of these other processes on photosynthetic efficiency are poorly quantified. In C(4) plants, little variation in phi values was observed, consistent with the fact that C(4) plants exhibit little photorespiration. As before, AQ values indicate that 22% of absorbed light energy cannot be accounted for by carbon fixation in C(4) plants. Among all three photosynthetic types, the phi of photosynthesis in CAM plants is the least studied, appears to be highly variable, and may present the greatest challenge to the CQY hypothesis. The high amount of energy diverted to processes other than carbon fixation in C(3) and C(4) plants and the poor characterization of photosynthetic efficiency in CAM plants are significant deficiencies in our otherwise robust understanding of the energetics of terrestrial photoautotrophy.  相似文献   

8.
The Portulacaceae is one of the few terrestrial plant families known to have both C(4) and Crassulacean acid metabolism (CAM) species. There may be multiple origins of the evolution of CAM within the Portulacaceae but the only clear evidence of C(4) photosynthesis is found in members of the genus Portulaca. In the Portulaca, CAM succulent tissue is overlaid with the C(4) tissue in a unique fashion where both pathways are operating simultaneously. Earlier reports have shown that the clade containing the genera Anacampseros and Grahamia may also contain C(4) photosynthetic species similar to the Portulaca, which would indicate multiple origins of C(4) photosynthesis within the family. The aim of the present study was to ascertain the true photosynthetic nature of these genera. An initial survey of the carbon isotope composition of the Anacampseros ranged from -12.6 per thousand to -24.0 per thousand, indicating very little CAM activity in some species, with other values close to the C(4) range. Anacampseros (=Grahamia) australiana which had been previously identified as a C(4) species had a carbon isotope composition value of -24.0 per thousand, which is more indicative of a C(3) species with a slight contribution of CAM activity. Other Anacampseros species with C(4)-like values have been shown to be CAM plants. The initial isotope analysis of the Grahamia species gave values in the range of -27.1 per thousand to -23.6 per thousand, placing the Grahamia species well towards the C(3) photosynthetic range. Further physiological studies indicated increased night-time CO(2) uptake with imposition of water stress, associated with a large diurnal acid fluctuation and a marked increased phosphoenolpyruvate carboxylase activity. This showed that the Grahamia species are actually facultative CAM plants despite their C(3)-like carbon isotope values. The results indicate that the Grahamia and Anacampseros species do not utilize the C(4) photosynthetic pathway. This is the first to identify that the Grahamia species are facultative CAM plants where CAM can be induced by water stress. This work supports earlier physiological work that indicates that this clade containing Anacampseros and Grahamia species comprises predominantly facultative CAM plants. This report suggests there may be only one clade which contains C(4) photosynthetic members with CAM-like characteristics.  相似文献   

9.
10.
The aim of this study was to investigate whether the root system of Mesembryanthemum crystallinum (L.) plays a role in triggering the induction of crassulacean acid metabolism (CAM) during water stress. Depriving well-irrigated plants of water, by allowing the soil surrounding the roots to dry, caused increased daily losses in leaf relative water content (RVVC) and mesophyll cell turgor pressure. The RWC of the roots also declined. Subsequently plants exhibited physiological characteristics of CAM photosynthesis (i.e. diurnal fluctuations in leaf titratable acidity and nocturnal net CO2 fixation). When the root system of plants was divided equally between two soil compartments and one half deprived of water, plants exhibited physiological characteristics of CAM without prior changes in leaf RWC content or mesophyll cell turgor pressure. Only the RWC of the water-stressed portion of the roots was reduced. These data suggest that in water-stressed plants daily changes in leaf water relations greater than those observed in well-irrigated plants, are not essential to trigger CAM expression. It is probable that a reduction in soil water availability can be perceived by the roots of M. crystallinum and that this information is conveyed to the leaves triggering the transition from C3 to CAM photosynthesis.  相似文献   

11.

Background and Aims

A positive correlation between tissue thickness and crassulacean acid metabolism (CAM) expression has been frequently suggested. Therefore, this study addressed the question of whether water availability modulates photosynthetic plasticity in different organs of two epiphytic orchids with distinct leaf thickness.

Methods

Tissue morphology and photosynthetic mode (C3 and/or CAM) were examined in leaves, pseudobulbs and roots of a thick-leaved (Cattleya walkeriana) and a thin-leaved (Oncidium ‘Aloha’) epiphytic orchid. Morphological features were studied comparing the drought-induced physiological responses observed in each organ after 30 d of either drought or well-watered treatments.

Key Results

Cattleya walkeriana, which is considered a constitutive CAM orchid, displayed a clear drought-induced up-regulation of CAM in its thick leaves but not in its non-leaf organs (pseudobulbs and roots). The set of morphological traits of Cattleya leaves suggested the drought-inducible CAM up-regulation as a possible mechanism of increasing water-use efficiency and carbon economy. Conversely, although belonging to an orchid genus classically considered as performing C3 photosynthesis, Oncidium ‘Aloha’ under drought seemed to express facultative CAM in its roots and pseudobulbs but not in its leaves, indicating that such photosynthetic responses might compensate for the lack of capacity to perform CAM in its thin leaves. Morphological features of Oncidium leaves also indicated lower efficiency in preventing water and CO2 losses, while aerenchyma ducts connecting pseudobulbs and leaves suggested a compartmentalized mechanism of nighttime carboxylation via phosphoenolpyruvate carboxylase (PEPC) (pseudobulbs) and daytime carboxylation via Rubisco (leaves) in drought-exposed Oncidium plants.

Conclusions

Water availability modulated CAM expression in an organ-compartmented manner in both orchids studied. As distinct regions of the same orchid could perform different photosynthetic pathways and variable degrees of CAM expression depending on the water availability, more attention should be addressed to this in future studies concerning the abundance of CAM plants.  相似文献   

12.
Crassulacean acid metabolism (CAM), an advanced photosynthetic pathway conferring water conservation to plants in arid habitats, has enigmatically been reported in some species restricted to extremely wet tropical forests. Of these, epiphytic Bromeliaceae may possess absorbent foliar trichomes that hinder gas‐exchange when wetted, imposing further limitations on carbon dioxide (CO2) uptake. The hypothesis that the metabolic plasticity inherent to CAM confers an ecological advantage over conventional C3 plants, when constant rainfall and mist might inhibit gas‐exchange was investigated. Gas‐exchange, fluorometry and organic acid and mineral nutrient contents were compared for the bromeliads Aechmea dactylina (CAM) and Werauhia capitata (C3) in situ at the Cerro Jefe cloud forest, Panama (annual rainfall > 4 m). Daily carbon gain and photosynthetic nutrient use efficiencies were consistently higher for A. dactylina, due to a greater CO2 uptake period, recycling of CO2 from respiration and a dynamic response of CO2 uptake to wetting of leaf surfaces. During the dry season CAM also had water conserving and photoprotective roles. A paucity of CAM species at Cerro Jefe suggests a recent radiation of this photosynthetic pathway into the wet cloud forest, with CAM extending diversity in form and function for epiphytes.  相似文献   

13.
In response to water stress, Portulacaria afra (L.) Jacq. (Portulacaceae) shifts its photosynthetic carbon metabolism from the Calvin-Benson cycle for CO2 fixation (C3) photosynthesis or Crassulacean acid metabolism (CAM)-cycling, during which organic acids fluctuate with a C3-type of gas exchange, to CAM. During the CAM induction, various attributes of CAM appear, such as stomatal closure during the day, increase in diurnal fluctuation of organic acids, and an increase in phosphoenolpyruvate carboxylase activity. It was hypothesized that stomatal closure due to water stress may induce changes in internal CO2 concentration and that these changes in CO2 could be a factor in CAM induction. Experiments were conducted to test this hypothesis. Well-watered plants and plants from which water was withheld starting at the beginning of the experiment were subjected to low (40 ppm), normal (ca. 330 ppm), and high (950 ppm) CO2 during the day with normal concentrations of CO2 during the night for 16 days. In water-stressed and in well-watered plants, CAM induction as ascertained by fluctuation of total titratable acidity, fluctuation of malic acid, stomatal conductance, CO2 uptake, and phosphoenolpyruvate carboxylase activity, remained unaffected by low, normal, or high CO2 treatments. In well-watered plants, however, both low and high ambient concentrations of CO2 tended to reduce organic acid concentrations, low concentrations of CO2 reducing the organic acids more than high CO2. It was concluded that exposing the plants to the CO2 concentrations mentioned had no effect on inducing or reducing the induction of CAM and that the effect of water stress on CAM induction is probably mediated by its effects on biochemical components of leaf metabolism.  相似文献   

14.
The role of carbon dioxide (CO(2)) as a signal in biochemical regulation networks of plants is fathomed. Transport mechanisms of CO(2) and HCO3- are surveyed, which are the prerequisite for signalling. A CO(2) sensor is not known to date, but any reaction where CO(2)/HCO3- is a substrate can be a candidate. Carbon concentrating mechanisms, e.g., in higher plants C(4)-photosynthesis and crassulacean acid metabolism (CAM), generate high internal CO(2) concentrations, important for photosynthesis, but also as a basis for signalling via diffusion of CO(2). Spatiotemporal dynamics of desynchronization/synchronization of photosynthetic activity over leaves can be followed by chlorophyll fluorescence imaging. One example of desynchronization is based on patchiness of stomatal opening/closing in heterobaric leaves due to anatomic constraints of lateral CO(2) diffusion. During CAM, largely different internal CO(2) concentrations prevail in the leaves, offering opportunities to study the effect of lateral diffusion of CO(2) in synchronizing photosynthetic activity over the entire leaves.  相似文献   

15.
Tomimatsu H  Tang Y 《Oecologia》2012,169(4):869-878
To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 μmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 μmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.  相似文献   

16.
17.
CAM photosynthesis in submerged aquatic plants   总被引:1,自引:0,他引:1  
Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism selected in response to aridity in terrestrial habitats, and, in aquatic environments, to ambient limitations of carbon. Evidence is reviewed for its presence in five genera of aquatic vascular plants, includingIsoëtes, Sagittaria, Vallisneria, Crassula, andLittorella. Initially, aquatic CAM was considered by some to be an oxymoron, but some aquatic species have been studied in sufficient detail to say definitively that they possess CAM photosynthesis. CO2-concentrating mechanisms in photosynthetic organs require a barrier to leakage; e.g., terrestrial C4 plants have suberized bundle sheath cells and terrestrial CAM plants high stomatal resistance. In aquatic CAM plants the primary barrier to CO2 leakage is the extremely high difrusional resistance of water. This, coupled with the sink provided by extensive intercellular gas space, generates daytime CO2(pi) comparable to terrestrial CAM plants. CAM contributes to the carbon budget by both net carbon gain and carbon recycling, and the magnitude of each is environmentally influenced. Aquatic CAM plants inhabit sites where photosynthesis is potentially limited by carbon. Many occupy moderately fertile shallow temporary pools that experience extreme diel fluctuations in carbon availability. CAM plants are able to take advantage of elevated nighttime CO2 levels in these habitats. This gives them a competitive advantage over non-CAM species that are carbon starved during the day and an advantage over species that expend energy in membrane transport of bicarbonate. Some aquatic CAM plants are distributed in highly infertile lakes, where extreme carbon limitation and light are important selective factors. Compilation of reports on diel changes in titratable acidity and malate show 69 out of 180 species have significant overnight accumulation, although evidence is presented discounting CAM in some. It is concluded that similar proportions of the aquatic and terrestrial floras have evolved CAM photosynthesis. AquaticIsoëtes (Lycophyta) represent the oldest lineage of CAM plants and cladistic analysis supports an origin for CAM in seasonal wetlands, from which it has radiated into oligotrophic lakes and into terrestrial habitats. Temperate Zone terrestrial species share many characteristics with amphibious ancestors, which in their temporary terrestrial stage, produce functional stomata and switch from CAM to C3. Many lacustrineIsoëtes have retained the phenotypic plasticity of amphibious species and can adapt to an aerial environment by development of stomata and switching to C3. However, in some neotropical alpine species, adaptations to the lacustrine environment are genetically fixed and these constitutive species fail to produce stomata or loose CAM when artificially maintained in an aerial environment. It is hypothesized that neotropical lacustrine species may be more ancient in origin and have given rise to terrestrial species, which have retained most of the characteristics of their aquatic ancestry, including astomatous leaves, CAM and sediment-based carbon nutrition.  相似文献   

18.
Inorganic carbon concentrating mechanisms (CCMs) catalyse the accumulation of CO(2) around rubisco in all cyanobacteria, most algae and aquatic plants and in C(4) and crassulacean acid metabolism (CAM) vascular plants. CCMs are polyphyletic (more than one evolutionary origin) and involve active transport of HCO(3)(-), CO(2) and/or H(+), or an energized biochemical mechanism as in C(4) and CAM plants. While the CCM in almost all C(4) plants and many CAM plants is constitutive, many CCMs show acclimatory responses to variations in the supply of not only CO(2) but also photosynthetically active radiation, nitrogen, phosphorus and iron. The evolution of CCMs is generally considered in the context of decreased CO(2) availability, with only a secondary role for increasing O(2). However, the earliest CCMs may have evolved in oxygenic cyanobacteria before the atmosphere became oxygenated in stromatolites with diffusion barriers around the cells related to UV screening. This would decrease CO(2) availability to cells and increase the O(2) concentration within them, inhibiting rubisco and generating reactive oxygen species, including O(3).  相似文献   

19.
Aechmea magdalenae Andre ex Baker, a constitutive Crassulacean acid metabolism (CAM) plant from the shaded Panamanian rain forest understory, has a maximum photosynthesis rate 2 to 3 times that of co-occurring C3 species and a limited potential for photosynthetic acclimation to high light. Chlorophyll fluorescence measurements indicated that (a) compared with co-occurring C3 species, photosynthetic electron transport in A. magdalenae responded more rapidly to light flecks of moderate intensity, attained a higher steady-state rate, and maintained a lower reduction state of plastoquinone during light flecks; (b) these characteristics were associated with phase III CO2 fixation of CAM; (c) when grown in full sun, A. magdalenae was chronically photoinhibited despite a remarkably high nonphotochemical quenching capacity, indicating a large potential for photoprotection; and (d) the degree of photoinhibition was inversely proportional to the length of phase III. Results from the light fleck studies suggest that understory A. magdalenae plants can make more efficient use of sun flecks for leaf carbon gain over most of the day than co-occurring C3 species. The association between the duration of phase III and the degree of photoinhibition for A. magdalenae in high light is discussed in relation to the limited photosynthetic plasticity in this species.  相似文献   

20.
Changes in photochemical activity induced by water deficit were investigated in Talinum triangulare, an inducible CAM plant. The aim was to analyse the interactions between C3 photosynthesis, induction and activity of CAM, photosynthetic energy regulation and the mechanisms responsible for photoprotection and photoinhibition under water stress. Gas exchange, chlorophyll a fluorescence, titratable acidity, carotenoid composition and relative contents of the PSII reaction centre protein (D1) were measured. A decrease in xylem tension (psi) from -0.14 to -0.2 MPa substantially decreased daytime net CO2 assimilation and daily carbon gain, and induced CAM, as shown by CO2 assimilation during the night and changes in titratable acidity; a further decrease in psi decreased nocturnal acid accumulation by 60%. Non-photochemical quenching of chlorophyll a fluorescence (NPQ) increased with water deficit, but decreased with a more severe drought (psi below -0.2 MPa), when CAM activity was low. NPQ was lower at 0900 h (during maximum decarboxylation rates) than at 1400 h, when malate pools were depleted. Down-regulation of PSII activity related to the rise in NPQ was indicated by a smaller quantum yield of PSII photochemistry (phiPSII) in droughted compared with watered plants. However, phiPSII was larger at 0900 h than at 1400 h. The de-epoxidation state of the xanthophyll cycle increased with drought and was linearly related to NPQ. Intrinsic quantum yield of PSII (FV/FM) measured at dusk was also lower in severely stressed plants than in controls. Under maximum photosynthetic photon flux and high decarboxylation rates of organic acids, the D1 content in leaves of droughted plants showing maximal CAM activity was identical to the controls; increased drought decreased D1 content by more than 30%. Predawn samples had D1 contents similar to leaves sampled at peak irradiance, with no signs of recovery after 12 h of darkness. It is concluded that under mild water stress, early induction of CAM, together with an increased energy dissipation by the xanthophyll cycle, prevents net degradation of D1 protein; when water deficit is more severe, CAM and xanthophyll cycle capacities for energy dissipation decline, and net degradation of D1 proceeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号