首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha-crystallin, one of the major proteins in the vertebrate eye lens, acts as a molecular chaperone, like the small heat-shock proteins, by protecting other proteins from denaturing under stress or high temperature conditions. alpha-Crystallin aggregation is involved in lens opacification, and high [Ca(2+)] has been associated with cataract formation, suggesting a role for this cation in the pathological process. We have investigated the effect of Ca(2+) on the thermal stability of alpha-crystallin by UV and Fourier-transform infrared (FTIR) spectroscopies. In both cases, a Ca(2+)-induced decrease in the midpoint of the thermal transition is detected. The presence of high [Ca(2+)] results also in a marked decrease of its chaperone activity in an insulin-aggregation assay. Furthermore, high Ca(2+) concentration decreases Cys reactivity towards a sulfhydryl reagent. The results obtained from the spectroscopic analysis, and confirmed by circular dichroism (CD) measurements, indicate that Ca(2+) decreases both secondary and tertiary-quaternary structure stability of alpha-crystallin. This process is accompanied by partial unfolding of the protein and a clear decrease in its chaperone activity. It is concluded that Ca(2+) alters the structural stability of alpha-crystallin, resulting in impaired chaperone function and a lower protective ability towards other lens proteins. Thus, alpha-crystallin aggregation facilitated by Ca(2+) would play a role in the progressive loss of transparency of the eye lens in the cataractogenic process.  相似文献   

2.
Age-related cataract is a result of crystallins, the predominant lens proteins, forming light-scattering aggregates. In the low protein turnover environment of the eye lens, the crystallins are susceptible to modifications that can reduce stability, increasing the probability of unfolding and aggregation events occurring. It is hypothesized that the alpha-crystallin molecular chaperone system recognizes and binds these proteins before they can form the light-scattering centres that result in cataract, thus maintaining the long-term transparency of the lens. In the present study, we investigated the unfolding and aggregation of (wild-type) human and calf betaB2-crystallins and the formation of a complex between alpha-crystallin and betaB2-crystallins under destabilizing conditions. Human and calf betaB2-crystallin unfold through a structurally similar pathway, but the increased stability of the C-terminal domain of human betaB2-crystallin relative to calf betaB2-crystallin results in the increased population of a partially folded intermediate during unfolding. This intermediate is aggregation-prone and prevents constructive refolding of human betaB2-crystallin, while calf betaB2-crystallin can refold with high efficiency. alpha-Crystallin can effectively chaperone both human and calf betaB2-crystallins from thermal aggregation, although chaperone-bound betaB2-crystallins are unable to refold once returned to native conditions. Ordered secondary structure is seen to increase in alpha-crystallin with elevated temperatures up to 60 degrees C; structure is rapidly lost at temperatures of 70 degrees C and above. Our experimental results combined with previously reported observations of alpha-crystallin quaternary structure have led us to propose a structural model of how activated alpha-crystallin chaperones unfolded betaB2-crystallin.  相似文献   

3.
The molecular chaperone function of alpha-crystallin in the lens prevents the aggregation and insolubilization of lens proteins that occur during the process of aging. We found that chemical modification of alpha-crystallin by a physiological alpha-dicarbonyl compound, methylglyoxal (MG), enhances its chaperone function. Protein-modifying sugars and ascorbate have no such effect and actually reduce chaperone function. Chaperone assay after immunoprecipitation or with immunoaffinity-purified argpyrimidine-alpha-crystallin indicates that 50-60% of the increased chaperone function is due to argpyrimidine-modified protein. Incubation of alpha-crystallin with DL-glyceraldehyde and arginine-modifying agents also enhances chaperone function, and we believe that the increased chaperone activity depends on the extent of arginine modification. Far- and near-UV circular dichroism spectra indicate modest changes in secondary and tertiary structure of MG-modified alpha-crystallin. LC MS/MS analysis of MG-modified alpha-crystallin following chymotryptic digestion revealed that R21, R49, and R103 in alphaA-crystallin were converted to argpyrimidine. 1,1'-Bis(4-anilino)naphthalene-5,5'-disulfonic acid binding, an indicator of hydrophobicity of proteins, increased in alpha-crystallin modified by low concentrations of MG (2-100 microM). MG similarly enhances chaperone function of another small heat shock protein, Hsp27. Our results show that posttranslational modification by a metabolic product can enhance the chaperone function of alpha-crystallin and Hsp27 and suggest that such modification may be a protective mechanism against environmental and metabolic stresses. Augmentation of the chaperone function of alpha-crystallin might have evolved to protect the lens from deleterious protein modifications associated with aging.  相似文献   

4.
ATP plays a significant role in the function of molecular chaperones of the large heat shock protein families. However, its role in the functions of chaperones of the small heat shock protein families is not understood very well. We report here a study on the role of ATP on the structure and function of the major eye lens chaperone alpha-crystallin. Our in vitro study shows that at physiological temperature, ATP induces the association of alpha-crystallin with substrate proteins. The association process is reversible and low affinity in nature with unit binding stoichiometry. 4,4'-Dianilino-1,1'-binaphthyl-5,5-disulfonic acid, dipotassium salt, binding studies show that ATP induces the exposure of additional hydrophobic sites on alpha-crystallin, but no appreciable enhancement of the same was observed for the substrate protein gamma-crystallin or carbonic anhydrase. An equilibrium unfolding study reveals that ATP at 3 mgm concentration stabilizes the alpha-crystallin structure by 4.5 kJ/mol. The compactness induced by ATP makes it more resistant to tryptic cleavage. ATP-induced association of chaperone alpha-crystallin with substrate enhanced its aggregation prevention ability and also enhanced the refolding yield of lactate dehydrogenase from the unfolded state. Our results suggest that the binding of ATP to alpha-crystallin and not its hydrolysis is required for all these effects, as replacement of ATP by its nonhydrolyzable analogue adenosine-5'-O-(3-thiotriphosphate), tetralithium salt, reproduced all the results faithfully. The implication of the ATP-induced reversible protein-protein association at physiological temperatures on the functional role of alpha-crystallin in vivo is discussed.  相似文献   

5.
High hydrostatic pressure-induced changes in bovine lens alpha-crystallin oligomers size and chaperone-like function were studied by a static light scattering. Under pressure 1.5 kbar, alpha-crystallin oligomers size is almost unaffected. Increase of the size was observed during several hours of incubation at 3 kbar. Such high-pressure effect on association has been previously revealed for detergent micelles, whereas the "typical" protein oligomers are known to dissociate under high pressure. Our results about pressure influence on alpha-crystallin association supports the previously proposed "protein micelle" model of the protein quaternary structure. Chaperone-like activity of alpha-crystallin is shown to increase after incubation at 3 kbar. After the end of the incubation this activity is slowly decreasing during several hours.  相似文献   

6.
The water-binding properties of bovine lens alpha-crystallin, collagen from calf skin and bovine serum albumin (BSA), were investigated with various techniques. The water absorptive capacity was obtained in high vacuum desorption experiments volumetrically, and also gravimetrically in controlled atmosphere experiments. NMR spin-echo technique was used to study the hydration of protein samples and to determine the spin-spin relaxation times (T2) from the protons of water, absorbed on the proteins. Isolated bovine lenses were sectioned into 11-12 morphological layers (from anterior cortex through nucleus to posterior cortex). Crystallin profiles were obtained for each lens layer using thin-layer isoelectric focusing in polyacrylamide gel (IEF). The water content in relation to dry weight of proteins was measured in individual morphological lens layers. During the water vapor uptake P/P(0)=0.75, alpha-crystallin did not absorb water, suggesting that hydrophobic regions of the protein are exposed to the aqueous solvent. At P/P(0)=1.0, the absorption of water by alpha-crystallin was 17% with a single component decay character of spin-echo (T2=3 ms). Addition of water to alpha-crystallin to about 50% of its w/w in the protein sample showed T2=8 ms with only one single component decay of the spin-echo signal. The single component decay character of the spin-echo indicates at the tightly bound water by alpha-crystallin. Under a relative humidity P/P(0)=1.0, collagen and BSA absorbed correspondingly 19.3% and 28% of water and showed a two-component decay curve with T2 of about 5 and 40 ms. The findings demonstrate the presence of two water fractions in collagen and BSA which are separated in space. The IEF data suggest a tight binding of water with alpha-crystallin with similar distribution patterns in the lens layers. The IEF data demonstrate a possible chaperone-like function for alpha-crystallin in the nucleus and inner cortex of the lens, but not in the outer cortex. To conclude, it was found that alpha-crystallin can immobilize and bind water to a greater extent than other proteins such as collagen and BSA. These results shed new light on structural properties of alpha-crystallin and have important implications for understanding the mechanism of the chaperone-like action of this protein in the lens and non-ocular tissues.  相似文献   

7.
分子伴侣的功能和应用   总被引:10,自引:0,他引:10  
本文综述了分子伴侣的分类、功能、作用机理、研究现状及应用前景。分子伴侣是在生物大分子的折叠、组装、转运及降解等过程中起协助作用,参与协助抗原的呈递和遗传物质的复制、转录及构象的确立,但自身并不发生任何变化的一大类广泛存在于生物体内的蛋白质分子。随着对分子伴侣的进一步研究和相关知识的不断深入,分子伴侣在生物产品开发、物种改良、抗衰老,疾病预防、诊断和治疗以及环境监测方面具有广阔的前景。  相似文献   

8.
Under lipid-free conditions, human apolipoprotein C-II (apoC-II) exists in an unfolded conformation that over several days forms amyloid ribbons. We examined the influence of the molecular chaperone, alpha-crystallin, on amyloid formation by apoC-II. Time-dependent changes in apoC-II turbidity (at 0.3 mg/ml) were suppressed potently by substoichiometric subunit concentrations of alpha-crystallin (1-10 microg/ml). alpha-Crystallin also inhibits time-dependent changes in the CD spectra, thioflavin T binding, and sedimentation coefficient of apoC-II. This contrasts with stoichiometric concentrations of alpha-crystallin required to suppress the amorphous aggregation of stressed proteins such as reduced alpha-lactalbumin. Two pieces of evidence suggest that alpha-crystallin directly interacts with amyloidogenic intermediates. First, sedimentation equilibrium and velocity experiments exclude high affinity interactions between alpha-crystallin and unstructured monomeric apoC-II. Second, the addition of alpha-crystallin does not lead to the accumulation of intermediate sized apoC-II species between monomer and large aggregates as indicated by gel filtration and sedimentation velocity experiments, suggesting that alpha-crystallin does not inhibit the relatively rapid fibril elongation upon nucleation. We propose that alpha-crystallin interacts stoichiometrically with partly structured amyloidogenic precursors, inhibiting amyloid formation at nucleation rather than the elongation phase. In doing so, alpha-crystallin forms transient complexes with apoC-II, in contrast to its chaperone behavior with stressed proteins.  相似文献   

9.
Cdc37 is a molecular chaperone that has a general function in the biogenesis of protein kinases. We identified mutations within the putative "protein kinase binding domain" of Cdc37 that alleviate the conditional growth defect of a strain containing a temperature-sensitive allele, tpk2(Ts), of the cyclic AMP-dependent protein kinase (PKA). These dominant mutations alleviate the temperature-sensitive growth defect by elevating PKA activity, as judged by their effects on PKA-regulated processes, localization and phosphorylation of the PKA effector Msn2, as well as in vitro PKA activity. Although the tpk2(Ts) growth defect is also alleviated by Cdc37 overproduction, the CDC37 dominant mutants contain wild-type Cdc37 protein levels. In addition, Saccharomyces cerevisiae Ste11 protein kinase has an elevated physical interaction with the altered Cdc37 protein. These results implicate specific amino-terminal residues in the interaction between Cdc37 and client protein kinases and provide further genetic and biochemical support for a model in which Cdc37 functions as a molecular chaperone for protein kinases.  相似文献   

10.
11.
The ribosome-associated chaperone trigger factor (TF) of Escherichia coli interacts with a variety of newly synthesized polypeptides to assist their correct folding. Here, we report that the TF of thermophilic eubacterium, Thermus thermophilus, arrested spontaneous folding of green fluorescent protein by forming a 1:1 binary complex. The complex was isolable by gel-filtration but was shown to be dynamic because green fluorescent protein was released by alpha-casein in large excess. Unexpectedly, EDTA completely abolished the folding-arrest activity of TF, and analysis revealed that the TF from our preparation contained approximately 0.5 mol Zn2+/mol TF. The folding-arrest activity of TF that was saturated with Zn2+ (approximately 1 mol/mol TF) was twice as efficient as that of untreated TF. Thus, chaperone activity of thermophilic TF is Zn2+-dependent.  相似文献   

12.
Small heat shock proteins (sHsps) are oligomers that perform a protective function by binding denatured proteins. Although ubiquitous, they are of variable sequence except for a C-terminal approximately 90-residue "alpha-crystallin domain". Unlike larger stress response chaperones, sHsps are ATP-independent and generally form polydisperse assemblies. One proposed mechanism of action involves these assemblies breaking into smaller subunits in response to stress, before binding unfolding substrate and reforming into larger complexes. Two previously solved non-metazoan sHsp multimers are built from dimers formed by domain swapping between the alpha-crystallin domains, adding to evidence that the smaller subunits are dimers. Here, the 2.5A resolution structure of an sHsp from the parasitic flatworm Taenia saginata Tsp36, the first metazoan crystal structure, shows a new mode of dimerization involving N-terminal regions, which differs from that seen for non-metazoan sHsps. Sequence differences in the alpha-crystallin domains between metazoans and non-metazoans are critical to the different mechanism of dimerization, suggesting that some structural features seen for Tsp36 may be generalized to other metazoan sHsps. The structure also indicates scope for flexible assembly of subunits, supporting the proposed process of oligomer breakdown, substrate binding and reassembly as the chaperone mechanism. It further shows how sHsps can bind coil and secondary structural elements by wrapping them around the alpha-crystallin domain. The structure also illustrates possible roles for conserved residues associated with disease, and suggests a mechanism for the sHsp-related pathogenicity of some flatworm infections. Tsp36, like other flatworm sHsps, possesses two divergent sHsp repeats per monomer. Together with the two previously solved structures, a total of four alpha-crystallin domain structures are now available, giving a better definition of domain boundaries for sHsps.  相似文献   

13.
Mycobacterium tuberculosis has two members of the alpha-crystallin (Acr) family of molecular chaperones. Expression of Acr1 is induced by exposure to hypoxia or nitric oxide and is associated with bacterial persistence in a non-replicating state. Expression of Acr2 is induced by heat shock, oxidative stress, and uptake by macrophages. We have shown that Acr2 continues to be expressed at a high level during both acute and chronic infection in the mouse model, with an increased ratio of acr2:acr1 mRNA in the persistent phase. Deletion of the acr2 gene resulted in a decrease in the resistance of M. tuberculosis to oxidative stress but did not impair growth in mouse bone marrow macrophages. There was no difference in bacterial load in mice infected with an acr2 deletion mutant, but a marked alteration in disease progression was evident from reduced weight loss over a prolonged infection. This correlated with reduced recruitment of T-cells and macrophages to the lungs of mice infected with the acr2 mutant and reduced immune-related pathology. These findings demonstrate that both alpha-crystallins contribute to persistent infection with M. tuberculosis and suggest that manipulation of acr expression can influence the host response to infection.  相似文献   

14.
Amyloid beta (Abeta) is a 40- to 42-residue peptide that is implicated in the pathogenesis of Alzheimer's Disease (AD). As a result of conformational changes, Abeta assembles into neurotoxic fibrils deposited as 'plaques' in the diseased brain. In AD brains, the small heat shock proteins (sHsps) alphaB-crystallin and Hsp27 occur at increased levels and colocalize with these plaques. In vitro, sHsps act as molecular chaperones that recognize unfolding peptides and prevent their aggregation. The presence of sHsps in AD brains may thus reflect an attempt to prevent amyloid fibril formation and toxicity. Here we report that alphaB-crystallin does indeed prevent in vitro fibril formation of Abeta(1-40). However, rather than protecting cultured neurons against Abeta(1-40) toxicity, alphaB-crystallin actually increases the toxic effect. This indicates that the interaction of alphaB-crystallin with conformationally altering Abeta(1-40) may keep the latter in a nonfibrillar, yet highly toxic form.  相似文献   

15.
Silver nitrate administration stimulates immune activation, inflammation and deterioration in cell function. It is well established that hippocampal and cortical tissue are susceptible to degeneration in responses to insult such as oxidative stress or infection. This study was designed to investigate the prophylactic effect of alpha-crystallin, a major chaperone lens protein comprising of alpha-A and alpha-B subunits in inflammation induced mice. Mice were divided into three groups (n=6 in each), control, inflammation and alpha-crystallin treated. Our result shows that alpha-crystallin pretreatment effectively diminished systemic inflammation induced glial fibrillary acidic protein (GFAP) and nuclear factor kappa B (NFkappaB) expression in the mice neocortex, reversed elevated intracellular calcium levels, acetylcholine esterase activity and depletion of glucose. Furthermore it also significantly prevented nitric oxide (P<0.05) and lipid peroxide production in the plasma, liver, neocortex and hippocampus of the inflammation-induced mice. In order to demonstrate the direct *OH and nitric oxide radical scavenging ability of alpha-crystallin, an In vitro experiment using primary astrocyte culture subjected to lipopolysaccharide (LPS), a well-known inflammatory stimuli were also carried out. This study reiterates that alpha-crystallin therapy may serve as a potent pharmacological agent in neuroinflammation.  相似文献   

16.
Small heat shock proteins (sHsps) are a ubiquitous family of molecular chaperones that prevent the misfolding and aggregation of proteins. However, specific details about their substrate specificity and mechanism of chaperone action are lacking. alpha1-Antichymotrypsin (ACT) and alpha1-antitrypsin (alpha1-AT) are two closely related members of the serpin superfamily that aggregate through nucleation-dependent and nucleation-independent pathways, respectively. The sHsp alpha-crystallin was unable to prevent the nucleation-independent aggregation of alpha1-AT, whereas alpha-crystallin inhibited ACT aggregation in a dose-dependent manner. This selective inhibition of ACT aggregation coincided with the formation of a stable high molecular weight alpha-crystallin-ACT complex with a stoichiometry of 1 on a molar subunit basis. The kinetics of this interaction occur at the same rate as the loss of ACT monomer, suggesting that the monomeric species is bound by the chaperone. 4,4'-Dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (Bis-ANS) binding and far-UV circular dichroism data suggest that alpha-crystallin interacts specifically with a non-native conformation of ACT. The finding that alpha-crystallin does not interact with alpha1-AT under these conditions suggests that alpha-crystallin displays a specificity for proteins that aggregate through a nucleation-dependent pathway, implying that the dynamic nature of both the chaperone and its substrate protein is a crucial factor in the chaperone action of alpha-crystallin and other sHsps.  相似文献   

17.
18.
19.
The molecular chaperone Hsp104 plays a central role in the clearance of aggregates after heat shock and the propagation of yeast prions. Hsp104's disaggregation activity and prion propagation have been linked to its ability to resolubilize or remodel protein aggregates. However, Hsp104 has also the capacity to catalyze protein aggregation of some substrates at specific conditions. Hence, it is a molecular chaperone with two opposing activities with respect to protein aggregation. In yeast models of Huntington's disease, Hsp104 is required for the aggregation and toxicity of polyglutamine (polyQ), but the expression of Hsp104 in cellular and animal models of Huntington's and Parkinson's disease protects against polyQ and α‐synuclein toxicity. Therefore, elucidating the molecular determinants and mechanisms underlying the ability of Hsp104 to switch between these two activities is of critical importance for understanding its function and could provide insight into novel strategies aimed at preventing or reversing the formation of toxic protein aggregation in systemic and neurodegenerative protein misfolding diseases. Here, we present an overview of the current molecular models and hypotheses that have been proposed to explain the role of Hsp104 in modulating protein aggregation and prion propagation. The experimental approaches and the evidences presented so far in relation to these models are examined. Our primary objective is to offer a critical review that will inspire the use of novel techniques and the design of new experiments to proceed towards a qualitative and quantitative understanding of the molecular mechanisms underlying the multifunctional properties of Hsp104 in vivo. © 2009 Wiley Periodicals, Inc. Biopolymers 93:252–276, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Encysted embryos of the primitive crustacean Artemia franciscana are among the most resistant of all multicellular eukaryotes to environmental stress, in part due to massive amounts of a small heat shock/alpha-crystallin protein (p26) that acts as a molecular chaperone. These embryos also contain very large amounts of the disaccharide trehalose, well known for its ability to protect macromolecules and membranes against damage due to water removal and temperature extremes. Therefore, we looked for potential interactions between trehalose and p26 in the protection of a model substrate, citrate synthase (CS), against heat denaturation and aggregation and in the restoration of activity after heating in vitro. Both trehalose and p26 decreased the aggregation and irreversible inactivation of CS at 43 degrees C. At approximate physiological concentrations (0.4 M), trehalose did not interfere with the ability of p26 to assist in the reactivation of CS after heating, but higher concentrations (0.8 M) were inhibitory. We also showed that CS and p26 interact physically during heating and that trehalose interferes with complex formation and disrupts CS-p26 complexes that form at high temperatures. We suggest from these results that trehalose may act as a "release factor," freeing folding intermediates of CS that p26 can chaperone to the native state. Trehalose and p26 can act synergistically in vitro, during and after thermal stress, suggesting that these interactions also occur in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号