首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
Summary An improved histochemical technique for the demonstration of lactate dehydrogenase activities in tissue sections is described. With this technique a semipermeable membrane is interposed between the incubating solution and the tissue sections preventing diffusion of lactate dehydrogenase into the medium during incubation. In the histochemical system the NAD+-dependent enzyme catalyzes the electron transfer from lactate into NAD+. Phenazine methosulphate and menadione serve as intermediate electron acceptors between reduced coenzyme and nitro-BT. Amytal is incorporated into the incubating-medium to block electron transfer to the cytochromes. Problems involved in the histochemical demonstration of lactate dehydrogenase activity are discussed.This investigation was in part supported by a grant from the Netherlands Organization for the Advancement of Pure Research (ZWO).  相似文献   

2.
Two inducible NADP+-dependent glycerol dehydrogenase (GlcDH) activities were identified in Mucor circinelloides strain YR-1. One of these, denoted iGlcDH2, was specifically induced by n-decanol when it was used as sole carbon source in the culture medium, and the second, denoted iGlcDH1, was induced by alcohols and aliphatic or aromatic hydrocarbons when glycerol was used as the only substrate. iGlcDH2 was found to have a much broader substrate specificity than iGlcDH1, with a low activity as an ethanol dehydrogenase with NAD+ or NADP+ as cofactor. Both isozymes showed an optimum pH for activity of 9.0 in Tris-HCl buffer and are subject to carbon catabolite repression. In contrast, the constitutive NADP+-dependent glycerol dehydrogenases (GlcDHI, II, and III) were only present in cell extracts when the fungus was grown in glycolytic carbon sources or glycerol under oxygenation, and their optimum pH was 7.0 in Tris-HCl buffer. In addition to these five NADP+-dependent glycerol dehydrogenases, a NAD+-dependent alcohol dehydrogenase is also present in glycerol or n-decanol medium; this enzyme was found to have weak activity as a glycerol dehydrogenase.  相似文献   

3.
Cell-free extracts of the xylose fermenting yeast Pichia stipitis exhibited xylitol dehydrogenase activity with NAD+ and NADP+. During the purification step on DEAE-sephadex A-50 a NAD+-dependent xylitol dehydrogenase could be separated from a NADP+-dependent. The NAD+-xylitol dehydrogenase was further purified to electrophoretic homogeneity via gel and affinity chromatography. The purified enzyme was most active at pH 9 and 35°C. Its molecular weight was determined to be 63,000 dalton by Sephadex G-200 column chromatography, and that of its subunit was 32,000 dalton by sodium dodecyl sulphate polyacrylamide gel electrophoresis. From the results of substrate specificity, the enzyme should be named l-iditol:NAD+-5-oxidoreductase (EC 1.1.1.14, sorbitol dehydrogenase).  相似文献   

4.
The activation of Ca2+-dependent K+ channel by propranolol or by ascorbate-phenazine methosulphate stimulates Na+-dependent transport of α-aminoisobutyric acid. This stimulation arises from a membrane hyperpolarization due to the specific increase of membrane K+ conductance. The same treatment does not modify the Na+-independent uptake of the norbornane amino acid.  相似文献   

5.
The subcellular distribution of NADP+ and NAD+-dependent glucose-6-phosphate and galactose-6-phosphate dehydrogenases were studied in rat liver, heart, brain, and chick brain. Only liver particulate fractions oxidized glucose-6-phosphate and galactose-6-phosphate with either NADP+ or NAD+ as cofactor. While all of the tissues examined had NADP+-dependent glucose-6-phosphate dehydrogenase activity, only rat liver and rat brain soluble fractions had NADP+-dependent galactose-6-phosphate dehydrogenase activity. Rat liver microsomal and rat brain soluble galactose-6-phosphate dehydrogenase activities were kinetically different (Km's 0.5 mm and 10 mm, respectively, for galactose-6-phosphate), although their reaction products were both 6-phosphogalactonate. Rat brain subcellular fractions did not oxidize 6-phosphogalactonate with either NADP+ or NAD+ cofactors but phosphatase activities hydrolyzing 6-phosphogalactonate, galactose-6-phosphate and galactose-1-phosphate were found in crude brain homogenates. In addition, galactose-6-phosphate and 6-phosphogalactonate were tested as inhibitors of various enzymes, with largely negative results, except that 6-phosphogalactonate was a competitive inhibitor (Ki = 0.5 mM) of rat brain 6-phosphogluconate dehydrogenase.  相似文献   

6.
Sixteen Tn916-induced mutants of Clostridium acetobutylicum were selected that were defective in the production of acetone and butanol. Formation of ethanol, however, was only partially affected. The strains differed with respect to the degree of solvent formation ability and could be assigned to three different groups. Type I mutants (2 strains) were completely defective in acetone and butanol production and contained one or three copies of Tn916 in the chromosome. Analysis of the mutants for enzymes responsible for solvent production revealed the presence of a formerly unknown, specific acetaldehyde dehydrogenase. The data obtained also strongly indicate that the NADP+-dependent alcohol dehydrogenase is in vivo reponsible for ethanol formation, whereas the NAD+-dependent alcohol dehydrogenase is probably involved in butanol production. No activity of this enzyme together with all other enzymes in the acetone and butanol pathway could be found in type I strains. All tetracycline-resistant mutants obtained did no longer sporulate.Non-standard abbreviations AADC acetoacetate decarboxylase - AcaDH acetaldehyde dehydrogenase - BuaDH butyraldehyde dehydrogenase - CoA-TF acetoacetyl coenzyme A: acetate/butyrate: coenzyme A transferase - NAD-ADH, NAD+ dependent alcohol dehydrogenase - NADP-ADH, NADP+ dependent alcohol dehydrogenase  相似文献   

7.
We have developed a single-step method for the purification of NADP+-dependent alcohol dehydrogenase fromEntamoeba histolyticaand NAD+-dependent alcohol dehydrogenase fromSaccharomyces cerevisiae.It is based on the affinity for zinc of both enzymes. The amebic enzyme was purified almost 800 times with a recovery of 54% and the yeast enzyme was purified 30 times with a recovery of 100%. The kinetic constants of the purified enzymes were similar to those reported for other purification methods. With mammalian alcohol dehydrogenase, we obtained a 40-kDa band suggestive of purified alcohol dehydrogenase, but we failed to retain enzymatic activity in this preparation. Our results suggest that the described method is more applicable to the purification of tetrameric alcohol dehydrogenases.  相似文献   

8.
A sensitive isotope exchange method was developed to assess the requirements for and compartmentation of pyruvate and oxalacetate production from malate in proliferating and nonproliferating human fibroblasts. Malatedependent pyruvate production (malic enzyme activity) in the particulate fraction containing the mitochondria was dependent on either NAD+ or NADP+. The production of pyruvate from malate in the soluble, cytosolic fraction was strictly dependent on NADP+. Oxalacetate production from malate (malate dehydrogenase, EC 1.1.1.37) in both the particulate and soluble fraction was strictly dependent on NAD+. Relative to nonproliferating cells, NAD+-linked malic enzyme activity was slightly reduced and the NADP+-linked activity was unchanged in the particulate fraction of serum-stimulated, exponentially proliferating cells. However, a reduced activity of particulate malate dehydrogenase resulted in a two-fold increase in the ratio of NAD(P)+-linked malic enzyme to NAD+-linked malate dehydrogenase activity in the particulate fraction of proliferating fibroblasts. An increase in soluble NADP+-dependent malic enzyme activity and a decrease in NAD+-linked malate dehydrogenase indictated an increase in the ratio of pyruvate-producing to oxalacetate-producing malate oxidase activity in the cytosol of proliterating cells. These coordinate changes may affect the relative amount of malate that is oxidized to oxalacetate and pyruvate in proliferating cells and, therefore, the efficient utilization of glutamine as a respiratory fuel during cell proliferation.  相似文献   

9.
Summary A quantitative cytochemical assay for NAD+ kinase-like activity in the guinea-pig thyroid gland is described. The NADP+ produced by the activity of the kinase was used to drive the NADP+-dependent enzyme glucose-6-phosphate dehydrogenase which is endogenous to the tissue. The activity of glucose-6-phosphate dehydrogenase is greatly in excess of that of the kinase and was unaffected by the constituents of the kinase incubation medium (ATP, Mg2+ and NAD+) either alone or in combination. Kinase activity was dependent both on ATP and Mg2+, with maximal activity seen when the Mg-ATP ratio was between 1:1 and 4:1. Free ATP inhibited the activity of the enzyme. Enzyme activity was exhibited over a broad pH range (7–9) with a peak at pH 8.2. The sulphhydryl-blocking agents,p-chloromercuribenzoate, iodoacetate and iodoacetamide (at 1 mM), completely abolished kinase activity but were without effect on glucose-6-phosphate dehydrogenase activity.N-ethylmaleimide and citrate (both at 1 mM) had no effect on either kinase or glucose-6-phosphate dehydrogenase activities.  相似文献   

10.
This communication describes the isolation and characterization of mutants of Rhizobium trifolii which can induce nitrogenase activity in defined liquid medium. Two procedures were used for the isolation of these mutants from R. trifolii strain DT-6: (1) following chemical mutagenesis, slow growin mutants were selected which were unable to utilize NH4+ as sole source of nitrogen; (2) as spontaneous mutants resistant to the glutamate analogue L-methionine-DL-sulfoximine.Mutants (DT-71, DT-125) isolated by these procedures induced nitrogenase activity in the free-living state, whereas the parent strain lacked this property. Induction of nitrogenase activity in these mutants occurred during the late exponential phase of growth when the rate of protein synthesis was decreasing. The addition of NH4+ to a medium containing glutamate as the nitrogen-source resulted in a 50–70% reduction (repression?) of nitrogenase activity; in contrast, the rate of protein synthesis or the rate of respiration was not influenced by exogenous NH4+.Biochemistry analysis showed that these mutants (strains DT-71 and DT-125) have defects in both nitrogen and carbon metabolism. The levels of glutamate synthase (both NADP+-and NAD+-dependent activities) and glutamate dehydrogenase (NAD+-dependent activity) were markedly lower. In addition, the mutants were found to have no detectable ribitol dehydrogenase or β-galactosidase activity. These findings are discussed in relation to a mechanism of regulation of symbiotic nitrogen fixation.  相似文献   

11.
This study is concerned with further development of the kinetic locking-on strategy for bioaffinity purification of NAD+-dependent dehydrogenases. Specifically, the synthesis of highly substituted N6-linked immobilized NAD+ derivatives is described using a rapid solid-phase modular approach. Other modifications of the N6-linked immobilized NAD+ derivative include substitution of the hydrophobic diaminohexane spacer arm with polar spacer arms (9 and 19.5 Å) in an attempt to minimize nonbiospecific interactions. Analysis of the N6-linked NAD+ derivatives confirm (i) retention of cofactor activity upon immobilization (up to 97%); (ii) high total substitution levels and high percentage accessibility levels when compared to S6-linked immobilized NAD+ derivatives (also synthesized with polar spacer arms); (iii) short production times when compared to the preassembly approach to synthesis. Model locking-on bioaffinity chromatographic studies were carried out with bovine heart -lactate dehydrogenase ( -LDH, EC 1.1.1.27), bakers yeast alcohol dehydrogenase (YADH, EC 1.1.1.1) and Sporosarcinia sp. -phenylalanine dehydrogenase ( -PheDH, EC 1.4.1.20), using oxalate, hydroxylamine, and -phenylalanine, respectively, as locking-on ligands. Surprisingly, two of these test NAD+-dependent dehydrogenases (lactate and alcohol dehydrogenase) were found to have a greater affinity for the more lowly substituted S6-linked immobilized cofactor derivatives than for the new N6-linked derivatives. In contrast, the NAD+-dependent phenylalanine dehydrogenase showed no affinity for the S6-linked immobilized NAD+ derivative, but was locked-on strongly to the N6-linked immobilized derivative. That this locking-on is biospecific is confirmed by the observation that the enzyme failed to lock-on to an analogous N6-linked immobilized NADP+ derivative in the presence of -phenylalanine. This differential locking-on of NAD+-dependent dehydrogenases to N6-linked and S6-linked immobilized NAD+ derivatives cannot be explained in terms of final accessible substitutions levels, but suggests fundamental differences in affinity of the three test enzymes for NAD+ immobilized via N6-linkage as compared to thiol-linkage.  相似文献   

12.
K. J. Lendzian 《Planta》1978,141(1):105-110
Glucose-6-phosphate dehydrogenase (EC 1.1.1.49) from spinach chloroplasts is strongly affected by interactions between Mg2+, proton, and substrate concentrations. Mg2+ activates the enzyme to different degrees; however, it is not essential for enzyme activity. The Mg2+-dependent activation follows a maximum curve, magnitude and position of the maximum being dependent on pH and NADPH/NADP+ ratios. At a ratio of zero and pH 7.2, maximum activity is observed at 10 mM Mg2+. Increasing the NADPH/NADP+ ratio up to 1.7 (a ratio measured in the stroma during a light period), maximum activity is shifted to much lower Mg2+ concentrations. At pH 8.2 (corresponding to the pH of the stroma in the light) and at a high NADPH/NADP+ ratio, enzyme activity is not affected by the Mg2+ ion. The results are discussed in relation to dark-light-dark regulation of the oxidative pentose phosphate cycle in spinach chloroplasts.Abbreviations DTT dithiothreitol - G-6-P glucose-6-phosphate - G-6-PDH glucose-6-phosphate dehydrogenase (EC 1.1.1.49) - PPC pentose phosphate cycle  相似文献   

13.
T. Betsche  K. Bosbach  B. Gerhardt 《Planta》1979,146(5):567-574
By ammonium sulfate fractionation and gel filtration an enzyme preparation which catalyzed NAD+-dependent L-lactate oxidation (10-4 kat kg-1 protein), as well as NADH-dependent pyruvate reduction (10-3 kat kg-1 protein), was obtained from leaves of Capsella bursa-pastoris. This lactate dehydrogenase activity was not due to an unspecific activity of either glycolate oxidase, glycolate dehydrogenase, hydroxypyruvate reductase, alcohol dehydrogenase, or a malate oxidizing enzyme. These enzymes could be separated from the protein displaying lactate dehydrogenase activity by gel filtration and electrophoresis and distinguished from it by their known properties. The enzyme under consideration does not oxidize D-lactate, and reduces pyruvate to L-lactate (the configuration of which was determined using highly specific animal L-lactate dehydrogenase). Based on these results the studied Capsella leaf enzyme is classified as L-lactate dehydrogenase (EC 1.1.1.27). It has a Km value of 0.25 mmol l-1 (pH 7.0, 0.3 mmol l-1 NADH) for pyruvate and of 13 mmol l-1 (pH 7.8, 3 mmol l-1 NAD+) for L-lactate. Lactate dehydrogenase activity was also detected in the leaves of several other plants.Abbreviation FMN flavin adenine mononucleotide  相似文献   

14.
《BBA》1985,810(2):140-147
Carotenoid absorbance changes were used to monitor the development of membrane potential in intact cell suspensions of Rhodopseudomonas capsulata strain N22. Low concentrations of phenazine methosulphate almost completely inhibited the generation of membrane potential in the light by anaerobic cells. The light-dependent reactions were restored by addition of either trimethylamine N-oxide, dimethylsulphoxide, nitrous oxide, or oxygen. In Rhodopseudomonas capsulata strain N22 DNAR+ addition of nitrate was also effective. The inhibition by phenazine methosulphate and restoration by auxiliary oxidant were observed in the presence of sufficient rotenone to block NADH dehydrogenase or with low concentrations of uncoupling agent to dissipate the membrane potential under dark, anaerobic conditions. It is suggested that in intact cells of these organisms there are mechanisms which operate to maintain the electron-transport chain at an optimal redox poise for efficient photosynthesis. Phenazine methosulphate perturbs the optimal redox poise by hastening equilibrium of the photosynthetic electron-transport chain with low-potential couples in the cell. The addition of auxiliary oxidants restores the optimal redox poise. This suggests a role in photosynthesis for the pathways of respiratory electron flow to nitrate, nitrous oxide, trimethylamine N-oxide/dimethylsulphoxide and oxygen.  相似文献   

15.
NAD+-dependent propan-1-ol and propan-2-ol dehydrogenase activities were detected in cell-free extracts of Rhodococcus rhodochrous PNKb1 grown on propane and potential intermediates of propane oxidation. However, it was unclear whether this activity was mediated by one or more enzymes. The isolation of mutants unable to utilize propan-1-ol (alcA-) or propan-2-ol (alcB-) as sole carbon and energy sources demonstrated that these substrates are metabolized by different alcohol dehydrogenases. These mutants were also unable to utilize propane as a growth substrate indicating that both alcohols are intermediates of propane metabolism. Therefore, propane is metabolized by terminal and sub-terminal oxidation pathways. Westernblot analysis demonstrated that a previously purified NAD+-dependent propan-2-ol dehydrogenase (Ashraf and Murrell 1990) was only synthesized after growth on propane and sub-terminal oxidation intermediates (but not acetone), and not propan-1-ol or terminal oxidation intermediates. Therefore, our evidence suggest that another dehydrogenase is involved in the metabolism of propan-1-ol and this agrees with the isolation of the alcA- and alcB- phenotypes. The previously characterized NAD+-dependent propan-2-ol dehydrogenase from R. rhodochrous PNKb1 is highly conserved amongst members of the propane-utilizing Rhodococcus-Nocardia complex.  相似文献   

16.
Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD+/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deficiency. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD+/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein deficiency caused a more pronounced decrease in the activity of studied Krebs cycle NAD+-dependent dehydrogenases and a 2.2-fold increase of the mitochondrial NAD+/NADН ratio.  相似文献   

17.
We detected dye-linked D-mannitol dehydrogenase activity in the crude extract of Acetobacter xylinum KU-1. The enzyme activity was specific for D-mannitol, and not pyridine nucleotide (NAD+, NADP+)-dependent. The optimal pH was found to be 5.0, while the optimal temperature was at 50°C. The enzyme activity was inhibited by p-quinone noncompetitively.  相似文献   

18.
Two types of 15-hydroxyprostaglandin dehydrogenase (NAD+ and NADP+ dependent) were demonstrated in bovine mesentric arteries and veins. The 15-hydroxyprostaglandin dehydrogenase activity was found in the high-speed supernatant, suggesting that these enzymes are associated with the cytoplasmic fraction of the blood vessels. The levels of activities of both NAD+- and NADP+-dependent dehydrogenases were similar in mesentric blood vessels. Prostaglandin F was preferred to the prostaglandin E2 as subtrate by both NAD+ and NADP+ dependent enzymes. The presence of 15-hydroxyprostaglandin dehydrogenase in blood vessels may play a siginificant role in the regulation of intracellular levels of prostaglandins of the E and F series in blood vessels.  相似文献   

19.
NAD+-dependent and NADP+-dependent glyceraldehyde-3-phosphate (G-3-P) dehydrogenases were isolated from Euglena gracilis and characterized as to their physical and chemical parameters. NAD+-G-3-P dehydrogenase was found to have a strong resemblance to similar enzymes from muscle tissue. It has a molecular weight of about 140,000, four subunits of identical size and charge, and a single species of NH2-terminal amino acid. Two sulfhydryl groups per subunit are present, one of which is directly involved in the catalytic activity and is rapidly titratable. The enzyme also exhibits the “half the sites reactivity” of sulfhydryl groups as defined by O. P. Malhotra and S. A. Bernhard ((1968) J. Biol. Chem. 243, 1243). The pH and temperature optima are also similar to those of the enzymes from muscle tissue, as are the reaction kinetics and the strict specificity for NAD+.NADP+-dependent G-3-P dehydrogenase is different in many respects. Its molecular weight is slightly lower (~136,000) than that of the NAD+ enzyme, though it also consists of four subunits. It has a higher affinity for the reverse reaction substrates, in line with its probable function in vivo in CO2 fixation. There is only one sulfhydryl group per subunit, and that is not involved in activity, suggesting a difference in reaction mechanisms between the two enzymes. The NADP+-dependent enzyme exhibits activation by ATP, whereas the NAD+-dependent enzyme is competitively inhibited by this nucleotide.The greatest difference observed is in the physical characteristics of the enzymes. NADP+-G-3-P dehydrogenase was highly hydrophobic. Its solubility in a 10% aqueous solution of p-dioxane was approximately four to five times that of the NAD+-enzyme. Isolation of the enzyme was accomplished by fractionation in 1,2-dimethoxyethane, which also stabilized the enzymatic activity, as did aqueous p-dioxane. The high axial ratio of the NADP+-enzyme (~9) coupled with its very low degree of hydration as well as the high degree of amidation of the dicarboxylic amino acids (>90%) indicates that the exterior of the enzyme molecule is probably hydrophobic in nature. This is in agreement with its in vivo hydrophobic environment in the chloroplast membrane and explains the lability of the enzyme once extracted into an aqueous environment as well as its stabilization in solvents.  相似文献   

20.
H H Tai  B Yuan  M Sun 《Life sciences》1979,24(14):1275-1280
Renal, pulmonary and gastric NAD+-dependent 15-hydroxyprostaglandin dehydrogenase activities were determined in both spontaneously hypertensive and normotensive rats at 6 and 12 weeks of age. Renal enzyme activity in hypertensive rats was only 30–40% of that present in normotensive controls at both ages. In contract, pulmonary enzyme activity in hypertensive animals was twice as active as that in normal controls. There was no significant difference in gastric enzyme activity. NAD+-dependent 9-hydroxyprostaglandin dehydrogenase activity, the enzyme responsible for the conversion of vasoinactive PGF metabolites to PGE metabolites, also failed to show any difference in two types of rat kidneys. The results indicate that, in hypertension, prostaglandin inactivation is impaired in kidney but is facilitated in lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号