首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P-450 and NADPH-cytochrome P-450 reductase were covalently attached to Sepharose 4B in different ways in order to find out factors which are important for the organization of the individual components to a catalytically active system. Both proteins can be bound individually, simultaneously, and successively to the matrix retaining N-demethylase activity after reconstitution with the complementary essential components. The activity of the system with immobilized components depends on the individual component, the sequence of fixation if both proteins are bound, the degree of purification, and the level of disintegration (detergent-treated samples). The functional importance of the lipid component is beyond doubt, but its specific role needs further investigations. At present it is difficult to differentiate between the influence of chemical modification on the properties of the proteins and the disturbed interactions within the system as the main reason for the decrease in the activity after immobilization. The cluster-like (aggregated) arrangement of the cytochrome P-450 system is necessary for an optimal activity.  相似文献   

2.
Fluorescein isothiocyanate (FITC) has been selectively bound to the epsilon-amino group of lysine-382 in cytochrome P-450 LM2 (RH, reduced-flavoprotein: oxygen oxidoreductase (RH-hydroxylating), EC 1.14.14.1) at pH 8.15. Benzphetamine N-demethylase activity of the reconstituted FITC-modified cytochrome P-450 LM2 was inhibited by 25%. This inhibition has been shown to be due to an impaired electron transfer from the NADPH-cytochrome P-450 reductase (NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) to the haemoprotein. The data indicate that cytochrome P-450 interacts with the flavoprotein via electrostatic interactions.  相似文献   

3.
Adrenocortical NADPH-cytochrome P-450 reductase (EC. 1.6.2.4) was purified from bovine adrenocortical microsomes by detergent solubilization and affinity chromatography. The purified cytochrome P-450 reductase was a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, being electrophoretically homogeneous and pure. The cytochrome P-450 reductase was optically a typical flavoprotein. The absorption peaks were at 274, 380 and 45 nm with shoulders at 290, 360 and 480 nm. The NADPH-cytochrome P-450 reductase was capable of reconstituting the 21-hydroxylase activity of 17 alpha-hydroxyprogesterone in the presence of cytochrome P-45021 of adrenocortical microsomes. The specific activity of the 21-hydroxylase of 17 alpha-hydroxyprogesterone in the reconstituted system using the excess concentration of the cytochrome P-450 reductase, was 15.8 nmol/min per nmol of cytochrome P-45021 at 37 degrees C. The NADPH-cytochrome P-450 reductase, like hepatic microsomal NADPH-cytochrome P-450 reductase, could directly reduce the cytochrome P-45021. The physicochemical properties of the NADPH-cytochrome P-450 reductase were investigated. Its molecular weight was estimated to be 80 000 +/- 1000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical ultracentrifugation. The cytochrome P-450 reductase contained 1 mol each FAD and FMN as coenzymes. Iron, manganese, molybdenum and copper were not detected. The Km values of NADPH and NADH for the NADPH-cytochrome c reductase activity and those of cytochrome c for the activity of NADPH-cytochrome P-450 reductase were determined kinetically. They were 5.3 microM for NADPH, 1.1 mM for NADH, and 9-24 microM for cytochrome c. Chemical modification of the amino acid residues showed that a histidyl and cysteinyl residue are essential for the binding site of NADPH of NADPH-cytochrome P-450 reductase.  相似文献   

4.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

5.
The regularities of changes in the functional activity of the microsomal monooxygenase system reconstituted by self-assembly from intact rat liver microsomes solubilized with 4% sodium cholate were studied at variable levels of NADPH-cytochrome P-450 reductase and the 3-methylcholanthrene-induced form of cytochrome P-450. Using antibodies against cytochrome P-448, the role of cytochrome P-448 in the overall reaction of benzopyrene hydroxylation induced in the microsomal membrane by a set of molecular forms of cytochrome P-450 was investigated. The effect of NADPH-cytochrome P-450 reductase and cytochrome P-448 incorporation into reconstituted microsomal membranes on benzpyrene metabolism suggests that in intact microsomal membranes benzopyrene metabolism induced by different forms of cytochrome P-450, with the exception of P-448, is limited by reductase is not the limiting component; however, cytochrome P-448 reveals its maximum activity at the cytochrome to reductase optimal molar ratio of 5:1; above this level, the catalytic activity of cytochrome P-448 is lowered.  相似文献   

6.
The effects of various antimycotic reagents and some other reagents on a cytochrome P-450-linked monooxygenase system were investigated with respect to the activities of NADPH-ferricyanide reductase. NADPH-cytochrome c reductase of NADPH-adreno-ferredoxin reductase from NADPH to cytochrome c via adreno-ferredoxin, NADPH-cytochrome P-450-phenylisocyanide complex reductase, and the cholesterol side chain cleavage of the cytochrome P-450scc-linked monooxygenase system. No reagents inhibited the NADPH-ferricyanide reductase activity. Only cloconazole inhibited about 50% of NADPH-cytochrome c reductase activity. Cloconazole, econazole, clotrimazole, etomidate and ketoconazole inhibited both NADPH-cytochrome P-450-phenylisocyanide complex reductase and the side chain cleavage activity of cholesterol of the cytochrome P-450scc-linked monooxygenase system. Cloconazole, econazole, etomidate and ketoconazole behaved like non-competitive inhibitors for NADPH-cytochrome P-450-phenylisocyanide reductase activities and their Ki values were 10(-4)-10(-6) M. Cloconazole was a non-competitive inhibitor of NADPH-cytochrome c reductase and its Ki value was 8.3 x 10(-4) M. Cloconazole, clotrimazole, econazole, etomidate, ketoconazole and mitotane completely inhibited the side chain cleavage activity of cholesterol.  相似文献   

7.
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.  相似文献   

8.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

9.
Confluent human endometrial stromal cells were cultured in medium with no hormone or supplemented with medroxyprogesterone acetate (MPA), estradiol (E2), and porcine relaxin (RLX) for 5 days. These stromal cells were then labeled with [35S]methionine for 3 h. The radioactive proteins in the particulate fraction of cell homogenate were extracted by detergent and incubated with antisera to purified placental aromatase cytochrome P-450 (P-450arom) and NADPH-cytochrome P-450 reductase to isolate the radio-labeled aromatase enzyme components. Analysis of the radio-labeled protein, isolated by antibody to the cytochrome P-450arom from different preparations (P45FBIII or R-8-2) showed a major band at molecular weight 54k on SDS polyacrylamide gel electrophoresis (SDS-PAGE). The intensity of 54k band was stronger in hormone treated stromal cells than that of control in parallel with the increase of aromatase activity. The radio-labeled protein isolated by anti-NADPH cytochrome P-450 reductase, REDFBIV, showed a major band at the molecular weight 73k on SDS-PAGE with comparable intensity in control and hormone treated samples. Thus, the apparent molecular weights of endometrial cytochrome P-450arom and cytochrome P-450 reductase were identical to placental aromatase enzyme system. When a secretory endometrium and a decidua were labeled with [35S]methionine, the cytochrome P-450arom was detected only in the decidua. NADPH cytochrome P-450 reductase was detected both in the endometrium and the decidua. These results show that antisera to placental aromatase enzyme system cross reacts with the endometrial aromatase enzyme components. The synthesis of cytochrome P-450arom was stimulated by MPA, E2 and RLX while the synthesis of the NADPH-cytochrome P-450 reductase aromatase component was not affected by the hormone.  相似文献   

10.
Modification of cytochrome P-450 with fluorescein isothiocyanate   总被引:1,自引:0,他引:1  
Fluorescein isothiocyanate (FITC) has been shown to be selectively attached to the N-terminus of cytochrome P-450 LM2. The N-demethylase activity of cytochrome P-450 LM2 reconstituted systems modified in this way was inhibited by 25%. As revealed by CD measurements the overall conformation as well as the immediate heme environment of cytochrome P-450 LM2 remained unchanged after attachment of the FITC molecule. The binding affinity of modified cytochrome P-450 LM2 toward benzphetamine and aniline and the cumene hydroperoxide- or H2O2-supported N-demethylation of benzphetamine are maintained. However, the introduction of the electron via NADPH-cytochrome P-450 reductase (EC 1.6.2.4) is impaired after modification of the alpha-amino group. The extent of reduced modified cytochrome P-450 LM2 in the cytochrome P-450 reductase-supported reduction reaction is diminished and the half-time of the reduction is increased. The diminished reducibility is ascribed to steric hindrance of groups directly involved in the interaction between cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase or to blocking of the charge-pair interactions between the alpha-amino group of P-450 LM2 and the respective negatively charged group of NADPH-cytochrome P-450 reductase. By energy-transfer measurements distances between the heme and the alpha-amino group of 2.65 and 3.97 nm for the oligomeric and the monomeric forms of P-450 LM2, respectively, have been determined.  相似文献   

11.
The NADPH-cytochrome c (P-450) reductase induced in the filamentous fungus Rhizopus nigricans as a component of 11 alpha-hydroxylase of progesterone was resolved by DEAE-cellulose chromatography into two components. One of the components is an iron-sulfur protein (rhizoporedoxin), whereas the other component is a protein with reductase activity dependent on NADPH (rhizoporedoxin reductase). As shown in the reconstitution assay, the NADPH-cytochrome c (P-450) reductase activity was restored upon combination of these two proteins.  相似文献   

12.
The enzymatic components of the rabbit pulmonary monooxygenase system, cytochromes P-450I and P-450II and NADPH-cytochrome P-450 reductase, are immunochemically distinct proteins. In pulmonary microsomes, the N-demethylation of benzphetamine, amino-pyrine, and ethylmorphine, and the O-deethylation of 7-ethoxycoumarin are dependent only on cytochrome P-450I, and the hydroxylation of coumarin is apparently catalyzed by both cytochromes. Cytochrome P-450II is immunochemically distinct from the major forms of hepatic cytochrome P-450 induced by phenobarbital or 3-methylcholanthrene, whereas cytochrome P-450I is indistinguishable from the former on the basis of physical and catalytic as well as immunochemical characteristics. Pulmonary and hepatic NADPH-cytochrome P-450 reductases also have identical physical, catalytic, and immunochemical properties. The lack of response of the lung monooxygenase system to phenobarbital, therefore, is apparently not due to an inability of the lung to synthesize the enzymes induced by phenobarbital in the liver. The relatively high proportion of cytochrome P-450I in the lung appears to be responsible for the higher rates (per nmol of P-450) of N-demethylation that have been observed in rabbit pulmonary as compared to hepatic microsomal fractions.  相似文献   

13.
18-Hydroxylation of deoxycorticosterone was studies with rat or bovine adrenal mitochondria or with reconstituted systems obtained from these fractions. The reconstituted systems consisted of a partially purified preparation of cytochrome P-450 from rat adrenals and a partially purified NADPH-cytochrome P450 reductase preparation from bovine adrenals. In some experimenta a soluble cytochrome P-450 fraction from bovine adrenals was used. Adrenodoxine and adrenodoxine reductase were shown to be the active components of the NADPH-cytochrome P-450 reductase preparation. Optimal assay conditions were determined for 18-hydroxylation by the crude mitochondrial fraction as well as by the reconstituted systems. In the presence of excess NADPH-cytochrome P-450 reductase fraction, the rate of 18-hydroxylation was linear with time and with the amount of cytochrome P-450. In incubations with intact rat adrenal mitochondria to which Ca2+ and an excess NADPH had been added, NADPH-cytochrome P-450 reductase increased the rate of 18-hydroxylation about 100%, indicating that NADPH-cytochrome P-45o reductase was to some extent rate-limiting. The rate of 18-hydroxylation of deoxycorticosterone by the reconstituted system as well as by intact mitochondrial fraction was much higher than the rat of 18-hydroxylation of corticosterone and progesterone. When the cytochrome P-450 preparation from rat adrenals in the reconstituted system was substituted for cytochrome P-450 from bovine adrenals, the rate of 18-hydroxylation decreased considerably. Under all experimental conditions, the 18-hydroxylation of deoxycorticosterone occurred with a concomitant and efficient 11beta-hydroxylation. Provided the source of cytochrome P-450 was the same, the ratio between 11beta- and 18hydroxylation was constant under all conditions and was not significantly different in the presence of metopirone, carbon monoxide, cytochrome c or different steroids. It is suggested that identical or at least very similar types of cytochrome P-450 are involved in 11beta- and 18-hydroxylation of deoxycorticosterone.  相似文献   

14.
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes.  相似文献   

15.
The activity of NADPH-cytochrome P-450 reductase in liver microsomes of 10- to 60-day-old rats was determined. Neither the half life time of cytochrome P-450 reduction nor the absolute amount of cytochrome P-450 reduced per time unit depend on age. Phenobarbital pretreatment enhances the reduction rate in all age groups. The addition of hexobarbital or ethylmorphine to microsomal suspension accelerates the reduction of cytochrome P-450 in some age groups only. Age differences corresponding to developmental changes in drug-metabolizing activities are not detectable. The NADPH-cytochrome P-450 reductase seems to be not responsible for the age dependence of drug metabolism.  相似文献   

16.
The reconstitution of microsomal membrane monooxygenase system with variable contents of the hydroxylating chain enzymatic components was carried out. It was found that during self-assembly of microsomal membranes solubilized with 4% sodium cholate and gel filtration through Sephadex LH-20 in the presence of isolated microsomal enzymes, two forms of cytochrome P-450, i. e. phenobarbital- and 3-methylcholantrene-induced ones, and NADPH-cytochrome P-450 reductase, the exogenous enzymes are incorporated into the microsomal membrane matrices of control and methyl-cholantrene-treated animals. In the membranes reconstituted from the microsomes of the methylcholantrene-induced animals the catalytic activity of cytochrome P-448 in the metabolism of benz(a)pyrene at varying cytochrome P-448 and NADPH-cytochrome P-450 reductase contents were investigated.  相似文献   

17.
The interaction between cytochrome P-450 and NADPH-cytochrome c reductase during catalysis has been investigated with a reconstituted monooxygenase system composed of the two purified enzyme components and synthetic phospholipid. Steady state kinetic data are consistent with a scheme in which the formation of a binary complex between the two proteins precedes catalysis. The formation of this binary complex is described by a simple mass action equation. In agreement with this equation, the observed Vmax for benzphetamine N-demethylation was found to be directly proportional to the calculated concentration of the cytochrome P-450 . reductase complex. Furthermore, with appropriate reductase/cytochrome P-450 mole ratios, the Vmax could be shown to be linearly dependent on either the reductase or the cytochrome P-450 concentration alone. In contrast, the Km parameter is independent of the complex concentration, indicating that no change in the rate-limiting step has occurred. Thus a distinction should be made between a rate-limiting enzyme component and the rate-limiting step in this multienzyme system.  相似文献   

18.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37 degrees C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane.  相似文献   

19.
Nitric oxide synthase is a cytochrome P-450 type hemoprotein.   总被引:35,自引:0,他引:35  
K A White  M A Marletta 《Biochemistry》1992,31(29):6627-6631
Nitric oxide has emerged as an important mammalian metabolic intermediate involved in critical physiological functions such as vasodilation, neuronal transmission, and cytostasis. Nitric oxide synthase (NOS) catalyzes the five-electron oxidation of L-arginine to citrulline and nitric oxide. Cosubstrates for the reaction include molecular oxygen and NADPH. In addition, there is a requirement for tetrahydrobiopterin. NOS also contains the coenzymes FAD and FMN and demonstrates significant amino acid sequence homology to NADPH-cytochrome P-450 reductase. Herein we report the identification of the inducible macrophage NOS as a cytochrome P-450 type hemoprotein. The pyridine hemochrome assay showed that the NOS contained a bound protoporphyrin IX heme. The reduced carbon monoxide binding spectrum shows an absorption maximum at 447 nm indicative of a cytochrome P-450 hemoprotein. A mixture of carbon monoxide and oxygen (80%/20%) potently inhibited the reaction (73-79%), showing that the heme functions directly in the oxidative conversion of L-arginine to nitric oxide and citrulline. Additionally, partially purified NOS from rat cerebellum was inhibited by CO, suggesting that this isoform may also contain a P-450-type heme. NOS is the first example of a soluble cytochrome P-450 in eukaryotes. In addition, the presence of FAD and FMN indicates that this is the first catalytically self-sufficient mammalian P-450 enzyme, containing both a reductase and a heme domain on the same polypeptide.  相似文献   

20.
Carboxyl groups of NADPH-cytochrome P-450 reductase have been modified with the water-soluble carbodiimide EDC. Although there is no significant loss in DCPIP reduction the activity with cytochrome c and cytochrome P-450 LM2 as electron acceptors was inhibited by about 60 and 85%, respectively (1 h incubation time, 20 mM EDC). The inactivation by EDC was nearly completely prevented in the presence of cytochrome P-450 LM2, but not by bovine serum albumin. These results and crosslinking studies suggest that carboxyl groups of NADPH-cytochrome P-450 reductase are involved in charge-pair interactions to cytochrome c and to at least two amino groups of cytochrome P-450 LM2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号