首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pre-steady-state kinetics of plant cell wall acid phosphatase has been investigated at different pH values. The approach of the steady stale lasts about 1 or 2 s and may be fitted with two exponential terms. For certain pH values the approach to the steady state exhibits damped oscillations. Plotting the sum and the product of the two time constants of these exponentials as a function of substrate concentration yields two straight lines. From the slopes and intercepts of these lines one may determine the values of rate and ionization constants involved in the reaction scheme. The results obtained are consistent with the view that the binding of the substrate to the enzyme does not induce a 'slow' conformation change of the enzyme. The enzyme reacts with its substrate while being mostly in its ionized form. Release of p-nitrophenol is also favoured by this ionized form of the enzyme. However, the hydrolysis of the phosphoryl-enzyme complex mostly occurs from the protonated form of the enzyme. The ionization constants of the free enzyme and of the various enzyme-ligand complexes are very similar.  相似文献   

2.
In a sequence of coupled enzyme reactions the steady-state production of product is preceded by a lag period or transition time during which the intermediates of the sequence are accumulating. Provided that a steady state is eventually reached, the magnitude of this lag may be calculated, even when the differentiation equations describing the process have no analytical solution. The calculation may be made for simple systems in which the enzymes obey Michaelis-Menten kinetics or for more complex pathways in which intermediates act as modifiers of the enzymes. The transition time associated with each intermediate in the sequence is given by the ratio of the appropriate steady-state intermediate concentration to the steady-state flux. The theory is also applicable to the transition between steady states produced by flux changes. Application of the theory to coupled enzyme assays allows a definition of the minimum requirements for successful operation of the assay. The theory can be extended to deal with sequences in which the enzyme concentration exceeds substrate concentration.  相似文献   

3.
The PheA domain of gramicidin synthetase A, a non-ribosomal peptide synthetase, selectively binds phenylalanine along with ATP and Mg2+ and catalyzes the formation of an aminoacyl adenylate. In this study, we have used a novel protein redesign algorithm, K*, to predict mutations in PheA that should exhibit improved binding for tyrosine. Interestingly, the introduction of two predicted mutations to PheA did not significantly improve KD, as measured by equilibrium fluorescence quenching. However, the mutations improved the specificity of the enzyme for tyrosine (as measured by kcat/KM), primarily driven by a 56-fold improvement in KM, although the improvement did not make tyrosine the preferred substrate over phenylalanine. Using stopped-flow fluorometry, we examined binding of different amino acid substrates to the wild-type and mutant enzymes in the pre-steady state in order to understand the improvement in KM. Through these investigations, it became evident that substrate binding to the wild-type enzyme is more complex than previously described. These experiments show that the wild-type enzyme binds phenylalanine in a kinetically selective manner; no other amino acids tested appeared to bind the enzyme in the early time frame examined (500 ms). Furthermore, experiments with PheA, phenylalanine, and ATP reveal a two-step binding process, suggesting that the PheA-ATP-phenylalanine complex may undergo a conformational change toward a catalytically relevant intermediate on the pathway to adenylation; experiments with PheA, phenylalanine, and other nucleotides exhibit only a one-step binding process. The improvement in KM for the mutant enzyme toward tyrosine, as predicted by K*, may indicate that redesigning the side-chain binding pocket allows the substrate backbone to adopt productive conformations for catalysis but that further improvements may be afforded by modeling an enzyme:ATP:substrate complex, which is capable of undergoing conformational change.  相似文献   

4.
The Briggs-Haldane approximation of the irreversible Michaelis-Menten scheme of enzyme kinetics is cited in virtually every biochemistry textbook and is widely considered the classic example of a quasi-steady-state approximation. Though of similar importance, the reversible Michaelis-Menten scheme is not as well characterized. This is a serious limitation since even enzymatic reactions that go to completion may be reversible. The current work derives a total quasi-steady-state approximation (tQSSA) for the reversible Michaelis-Menten and delineates its validity domain. The tQSSA allows the derivation of uniformly valid approximations for the limit of low enzyme concentrations, ET相似文献   

5.
The substrate specificity of isoleucyl-tRNA synthetase from Escherichia coli MRE 600 with regard to ATP analogs has been compared with the results obtained with isoleucyl-tRNA synthetase from yeast. The enzyme from E. coli is less specific, the two enzymes exhibit different topographies of their active centres. The order of substrate addition to isoleucyl-tRNA synthetase from E. coli MRE 600 has been investigated by bisubstrate kinetics, product inhibition and inhibition by substrate analogs. The inhibition studies were done in the aminoacylation and in the pyrophosphate exchange reaction, the aminoacylation was investigated in the absence and presence of inorganic pyrophosphatase. As found for isoleucyl-tRNA synthetase from yeast, the results of the pyrophosphate exchange studies indicate the possibility of formation of E . Ile-AMP . ATP complexes by random addition of one ATP and one isoleucine molecule, followed by adenylate formation, release of pyrophosphate and subsequent addition of a second molecule of ATP. For the aminoacylation in the absence of pyrophosphatase, a rapid-equilibrium random ter addition of the substrates is found whereas the enzyme from yeast exhibits a steady-state ordered ter-ter mechanism; in the presence of pyrophosphatase the mechanism is bi-uni uni-bi ping-pong similarly as observed for the yeast enzyme. A comparison of inhibition patterns obtained with N(6)-benzyladenosine 5'-triphosphate under different assay conditions (spermine or magnesium ions, addition of pyrophosphatase) indicates that even more than two pathways of the aminoacylation may exist. The catalytic cycles of the two mechanisms derived from the observed orders of substrate addition and product release include the same enzyme substrate complex (E . tRNA . Ile-AMP) for the aminoacyl transfer reaction. The kcat values, however, are considerably different: kcat of the sequential pathway is about 40% lower than kcat of the ping-pong mechanism.  相似文献   

6.
There are numerous studies on systems comprising an enzyme encapsulated in unilamellar liposomes and its substrate initially present in the external aqueous media. Most of these studies are focused on enzyme stability and activity in a restricted media. However, the rate of the process is also determined by the capacity of the substrate to permeate towards the liposome inner pool. In spite of this, there are few studies aimed at a quantitative evaluation of the substrate permeation rate and its lifetime inside the liposome pool. In the present work, we describe, in terms of a very simple mechanism, the permeation of glucose and hydrogen peroxide in DPPC unilamellar liposomes. To this aim, we evaluated the rate of the process employing encapsulated glucose oxidase and catalase in the kinetic diffusion controlled limit. Under this condition, the rate of the process becomes zero order in the enzyme and allows a direct evaluation of the rate constant for the permeation process and the lifetime of a substrate molecule incorporated into the liposome inner pool.  相似文献   

7.
A graphical method is described which allows determination of kinetic parameters when substrate, inhibitor or activator concentrations must be in the vicinity of the enzyme concentration and a significant fraction of ligand is bound. Velocity is measured at several ligand: enzyme ratios at two or more enzyme concentrations. Results are obtained in terms of free and bound ligand corresponding to particular velocities. The relationship between velocity and bound and free ligand may then be analysed by any desired plotting technique. Preknowledge of the reaction mechanism or experimental determination of Vmax. is not required. The relationship between ligand bound and enzyme activity need not be linear and the method is equally suitable for analysing co-operative as well as simple kinetics. Application of the method is demonstrated by analysis of the inhibition of fructose, 1,6-bisphosphatase by AMP.  相似文献   

8.
In kinetic studies of the folding of bovine carbonic anhydrase from disorganized to native structure, an azosulfonamide, 2-(4-sulfomylphenylazo)-7-acetamido-1-hydroxynaphthalene-3,6-disulfonate (I), has been used as a probe to follow the dynamics of formation of the active site region. The probe is a specific inhibitor of the native enzyme that binds in the active site crevice. The experiments, with previous data (Yazgan, A., and Henkens, R. W. (1972), Biochemistry 11, 1314), show that a tight binding site for I forms at an intermediate stage in the folding process. A subsequent conformational change perturbs the visible absorption and circular dichroism of bound I and could result in even tighter binding. The subsequent change completes formation of the active site. This is shown by results from separate experiments on the kinetics of recovery of activity (p-nitrophenyl acetate as substrate). Similar probe methods could be used with other proteins and enzymes to study the kinetics and mechanism of regeneration of specific sites--for example, the active site.  相似文献   

9.
This article provides an introduction to a computer tutorial on transient state kinetics. The tutorial uses our Macintosh version of the computer program, KINSIM, that calculates the time course of reactions. KINSIM is also available for other popular computers. This program allows even those investigators not mathematically inclined to evaluate the rate constants for the transitions between the intermediates in any reaction mechanism. These rate constants are one of the insights that are essential for understanding how biochemical processes work at the molecular level. The approach is applicable not only to enzyme reactions but also to any other type of process of interest to biophysicists, cell biologists, and molecular biologists in which concentrations change with time. In principle, the same methods could be used to characterize time-dependent, large-scale processes in ecology and evolution. Completion of the tutorial takes students 6-10 h. This investment is rewarded by a deep understanding of the principles of chemical kinetics and familiarity with the tools of kinetics simulation as an approach to solve everyday problems in the laboratory.  相似文献   

10.
The kinetics of enzymatic cellulose hydrolysis in a plug-flow column reactor catalysed by cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Trichoderma longibrachiatum adsorbed on cellulose surface have been studied. The maximum substrate conversion achieved was 90–94%. The possibility of enzyme recovery for a reactor of this type is discussed. A mathematical model for enzymatic cellulose hydrolysis in a plug-flow column reactor has been developed. The model allows for the component composition of the cellulase complex, adsorption of cellulases on the substrate surface, inhibition by reaction products, changes in cellulose reactivity and the inactivation of enzymes in the course of hydrolysis. The model affords a reliable prediction of the kinetics of d-glucose and cellobiose formation from cellulose in a column reactor as well as the degree of substrate conversion and reactor productivity with various amounts of adsorbed enzymes and at various flow rates.  相似文献   

11.
J B Adams  D McDonald 《Steroids》1983,41(5):575-586
Pure hydroxysteroid sulfotransferase (EC 2.8.2.2) of human adrenal glands possesses a wide substrate specificity towards steroids. This wide specificity has now been found to extend to simple alcohols; normal aliphatic alcohols from C3 onwards acting as substrates with C9 showing the highest rate. Increased rate was accompanied by a decrease in Km. In marked contrast to the sulfurylation of steroids such as dehydroepiandrosterone, which exhibit wave-like kinetics, the kinetics with simple alcohols were of the normal Michaelis-Menten type. By means of enzyme antibody and enzyme stability studies evidence was provided that one and the same enzyme was responsible for sulfurylation of hydroxyls on the 3- and 17- positions of steroids and simple alcohols. The data lend support to previous evidence that the enzyme controls the secretion of dehydroepiandrosterone sulfate via steroid-specific binding sites, enabling self-regulation in response to ACTH action.  相似文献   

12.
Ulva pertusa Kjellm alkaline phosphatase (EC 3.3.3.1) is a metalloenzyme, the active site of which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory described by Tsou of the substrate reaction during irreversible inhibition of enzyme activity has been employed to study the kinetics of the course of inactivation of the enzyme by EDTA. The kinetics of the substrate reaction at different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA indicated a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing that the initial formation of an enzyme-EDTA complex is a relative rapid reaction, following by a slow inactivation step that probably involves a conformational change of the enzyme. The presence of Zn2+ apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

13.
Substrate channeling is the process in which the intermediate produced by one enzyme is transferred to the next enzyme without complete mixing with the bulk phase. This process is equivalent to a microcompartmentation of the intermediate, although classic diffusion occurs simultaneously to varying extents in many of these cases. This microcompartmentation and other factors of channeling provide many potential biological advantages. Extensive examples of channeling can be found in the cited reviews. The choice of methods to detect and characterize substrate channeling depends extensively on the type of enzyme associations involved, the constants of the system, and, to some extent, the mechanism of channeling. Thus it is important to distinguish stable, dynamic, and catalytically induced enzyme associations as well as recognize different mechanisms of substrate channeling. We discuss the principles, experimental details, and limitations and precautions of five rather general methods. These use measurements of transient times, isotope dilution or enhancement, competing reaction effects, enzyme buffering kinetics, and transient-state kinetics. These encompass methods applicable to studies in vitro, in situ, and in vivo. None of these methods is applicable to all systems. They are also susceptible to artifacts without proper attention to precautions. Transient-state kinetic methods clearly excel in elucidating molecular mechanisms of channeling. However, they are often not the best method for initial detection and characterization of the process and they are not applicable to many complex systems. Several other methods that have been successful in indicating substrate channeling are briefly described.  相似文献   

14.
The kinetics of AMP-aminohydrolase, which under steady state conditions shows a typical sigmoid dependence of initial velocities versus substrate concentration, have been examined by rapid mixing methods. Using this technique it was observed that when substrate or substrate plus activator (K(+)) were mixed with enzyme, the rate of appearance of product markedly increased during the first few tenths of a second. The time course of this change in rate was taken to reflect the progress of activation by substrate or by K(+). On the other hand, addition of activator to enzyme prior to mixing with substrate gave process curves for the formation of product consistent with normal Michaelis-Menten behaviour.Under the conditions where the reaction was examined, the enzyme at time zero had less than 10% of the activity of the fully active enzyme. The time course for activation with K(+) followed a first order process with a rate constant of 10.6 sec(-1) at 20 degrees C. A simple mechanism consistent with the data and capable of explaining the sigmoid dependence of initial velocities versus substrate concentrations observed in steady state kinetics was proposed.  相似文献   

15.
Many models that describe the turnover of the microbial biomass in soil use either first order kinetics where the rate of turnover is directly proportional to the microbial mass, or a variant of the Michaelis-Menten law that describes enzyme kinetics. To account for the different rates of microbial turnover observed at different times after the addition of substrate, some authors have suggested the existence of more than one pool of biomass. Each pool obeys the same kinetic law but with a different rate. In other experiments a disproportionately large increase in the turnover of native organisms has been observed relative to the amount of fresh substrate added. A change in the kinetic law describing the turnover of organisms can account for these observations and yet retain the simplicity of a single pool of micro-organisms. However where multiple pools of organisms are justified a mixed kinetic law with both first and second order terms may be more appropriate; in other words one pool of micro-organisms but two rate constants. The advantage of retaining a single pool of microbial biomass is that models may more readily be constructed in relation to the routine measurements of total microbial mass.  相似文献   

16.
P Shen  R Larter 《Biophysical journal》1994,67(4):1414-1428
Two chemical kinetic models are investigated using standard nonlinear dynamics techniques to determine the conditions under which substrate inhibition kinetics can lead to oscillations. The first model is a classical substrate inhibition scheme based on Michaelis-Menten kinetics and involves a single substrate. Only when this reaction takes place in a flow reactor (i.e., both substrate and product are taken to follow reversible flow terms) are oscillations observed; however, the range of parameter values over which such oscillations occur is so narrow it is experimentally unobservable. A second model based on a general mechanism applied to the kinetics of many pH-dependent enzymes is also studied. This second model includes both substrate inhibition kinetics as well as autocatalysis through the activation of the enzyme by hydrogen ion. We find that it is the autocatalysis that is always responsible for oscillatory behavior in this scheme. The substrate inhibition terms affect the steady-state behavior but do not lead to oscillations unless product inhibition or multiple substrates are present; this is a general conclusion we can draw from our studies of both the classical substrate inhibition scheme and the pH-dependent enzyme mechanism. Finally, an analysis of the nullclines for these two models allows us to prove that the nullcline slopes must have a negative value for oscillatory behavior to exist; this proof can explain our results. From our analysis, we conclude with a brief discussion of other enzymes that might be expected to produce oscillatory behavior based on a pH-dependent substrate inhibition mechanism.  相似文献   

17.
Green crab (Scylla Serrata) alkaline phosphatase (EC 3.1.3.1.) is a metalloenzyme, the each active site in which contains a tight cluster of two zinc ions and one magnesium ion. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity previously described by Tsou has been applied to a study on the kinetics of the course of inactivation of the enzyme by ethylenediaminetetraacetic acid disodium (EDTA). The kinetics of the substrate reaction with different concentrations of the substrate p-nitrophenyl phosphate (PNPP) and inactivator EDTA suggested a complexing mechanism for inactivation by, and substrate competition with, EDTA at the active site. The inactivation kinetics are single phasic, showing the initial formation of an enzyme-EDTA complex is a relatively rapid reaction, followed a slow inactivation step that probably involves a conformational change of the enzyme. Zinc ions are finally removed from the enzyme. The presence of metal ions apparently stabilizes an active-site conformation required for enzyme activity.  相似文献   

18.
The reaction between lentil (Lens culinaris) seedling amine oxidase and its chromogenic substrate, p-dimethylaminomethylbenzylamine, has been studied by the stopped-flow technique. Upon being mixed with substrate in the absence of oxygen, the enzyme is bleached in a complex kinetic process. A yellow intermediate absorbing at 464 nm and the first product (aldehyde) are formed in subsequent steps. When oxygenated buffer is mixed with substrate-reduced amine oxidase, the 496 nm absorption of the oxidized enzyme is very rapidly restored in a second-order process (k = 2.5 X 10(7) M-1 X S-1). This reaction is appreciable even at very low oxygen concentration, in keeping with the fairly low Km for O2 measured by steady-state kinetics.  相似文献   

19.
1. A cyclic nucleotide phosphodiesterase (EC 3.1.4.16) has been partially purified from bovine rod outer segments. The enzyme preparation obtained has a very high specific activity towards cyclic GMP and is still able to hydrolyze cyclic AMP. Upon polyacrylamide gel electrophoresis, one major and three minor protein bands are seen, the enzyme activity being associated with the major band. The enzyme eluted from the gels still hydrolyzes both cyclic nucleotides. At all substrate concentrations tested, cyclic GMP was hydrolyzed at a faster rate. The enzyme eluted from the gel columns migrated as a single band upon electrophoresis in 0.1% sodium dodecyl sulfate-polyacrylamide gels corresponding to a molecular weight of 105 000. 2. A complex kinetic pattern was observed for cyclic GMP hydrolysis: the plot of velocity vs substrate concentration was hyperbolic at low and sigmoidal at higher concentrations. By contrast, simple kinetics were observed for cyclic AMP hydrolysis yielding an apparent Km of 0.1 mM. The unusual kinetics may be implicated in the regulation of cyclic GMP levels in rod outer segments. 3. Cyclic AMP stimulated the hydrolysis of cyclic GMP at low and inhibited it at higher concentrations. Addition of Mg2+ appeared to be necessary for optimum activity. The activity measured in the absence of exogenous Mg2+ was abolished by EDTA.  相似文献   

20.
The reduction kinetics of both the resting and redox-cycled forms of the nitrite reductase from the anaerobic rumen bacterium Wolinella succinogenes were studied by stopped-flow reaction techniques. Single-turnover reduction of the enzyme by dithionite occurs in two kinetic phases for both forms of the enzyme. When the resting form of the enzyme is subjected to a single-turnover reduction by dithionite, the slower of the two kinetic phases exhibits a hyperbolic dependence of the rate constant on the square root of the reductant concentration, the limiting value of which (approximately 4 s-1) is assigned to a slow internal electron-transfer process. In contrast, when the redox-cycled form of the enzyme is reduced by dithionite in a single-turnover experiment, both kinetic phases exhibit linear dependences of the rate on the square root of dithionite concentration, with associated rate constants of 150 M-1/2.s-1 and 6 M-1/2.s-1. Computer simulations of both the reduction processes shows that no unique set of rate constants can account for the kinetics of both forms, although the kinetics of the redox-cycled species is consistent with a much enhanced rate of internal electron transfer. Under turnover conditions the time course for reduction of the enzyme, in the presence of millimolar levels of nitrite and 100 mM-dithionite, is extremely complex. A working model for the mechanism of the turnover activity of the enzyme is proposed which very closely describes the reaction kinetics over a wide range of substrate concentrations, as shown by computer simulation. The similarity in the action of the nitrite reductase enzyme and mammalian cytochrome c oxidase is commented upon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号