首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fructan-hydrolyzing activities from Lolium rigidum Gaudin   总被引:5,自引:4,他引:1  
  相似文献   

3.
4.
The hydrolytic plant enzymes of family 32 of glycoside hydrolases (GH32), including acid cell wall type invertases (EC 3.2.1.26), fructan 1-exohydrolases (1-FEH; EC 3.2.1.153) and fructan 6-exohydrolases (6-FEH; EC 3.2.1.154), are very similar at the molecular and structural levels, but are clearly functionally different. The work presented here aims at understanding the evolution of enzyme specificity and functional diversity in this family by means of site-directed mutagenesis. It is demonstrated for the first time that invertase activity can be introduced in an S101L mutant of chicory (Cichorium intybus) 1-FEH IIa by influencing the orientation of Trp 82. At high sucrose and enzyme concentrations, a shift is proposed from a stable inhibitor configuration to an unstable substrate configuration. In the same way, invertase activity was introduced in Beta vulgaris 6-FEH by introducing an acidic amino acid in the vicinity of the acid-base catalyst (F233D mutant), creating a beta-fructofuranosidase type of enzyme with dual activity against sucrose and levan. As single amino acid substitutions can influence the donor substrate specificity of FEHs, it is predicted that plant invertases and FEHs may have diversified by introduction of a very limited number of mutations in the common ancestor.  相似文献   

5.
6.
7.
* Invertases and fructan exohydrolases (FEHs) fulfil important physiological functions in plants. Sucrose is the typical substrate for invertases and bacterial levansucrases but not for plant FEHs, which are usually inhibited by sucrose. * Here we report on complexes between chicory (Cichorium intybus) 1-FEH IIa with the substrate 1-kestose and the inhibitors sucrose, fructose and 2,5 dideoxy-2,5-imino-D-mannitol. Comparisons with other family GH32 and 68 enzyme-substrate complexes revealed that sucrose can bind as a substrate (invertase/levansucrase) or as an inhibitor (1-FEH IIa). * Sucrose acts as inhibitor because the O2 of the glucose moiety forms an H-linkage with the acid-base catalyst E201, inhibiting catalysis. By contrast, the homologous O3 of the internal fructose in the substrate 1-kestose forms an intramolecular H-linkage and does not interfere with the catalytic process. Mutagenesis showed that W82 and S101 are important for binding sucrose as inhibitor. * The physiological implications of the essential differences in the active sites of FEHs and invertases/levansucrases are discussed. Sucrose-inhibited FEHs show a K(i) (inhibition constant) well below physiological sucrose concentrations and could be rapidly activated under carbon deprivation.  相似文献   

8.
9.
10.
11.
Wheat plants were grown at a day/night temperature of 18/13°C under glasshouse conditions. Twenty-two d after anthesis, one set of plants was shaded to 50% of the normal photon fluence rate, another was 'degrained' by selective spikelet removal which left only the grains in the five central spikelets; a further set was left as control. Individual plants were harvested at days 22, 30 or 42 after anthesis. Extracts from the peduncle and the penultimate internode were prepared to determine the activities of sucrose phosphate synthase, sucrose synthase, fructan exohydrolase and acid invertase, and to assess the concentration of hexose sugars, sucrose and fructans. Measurements were also made of ear and individual grain weights, and stem f. wt and d. wt. There was a decline in the amount of fructans with time, more pronounced in 'shaded' (source-limited) than in control plants. By contrast, in 'degrained' (sink-limited) plants, the amount of fructans in the stem initially rose, then decreased, with a concomitant increase in the amount of fructose. The shifts in sugar content of the wheat culm reflected both the sink demand of the ear and source activity. The activity of fructan exohydrolase correlated with the carbohydrate changes. Under limited photosynthate assimilation, the mobilization of fructans from the internodes towards the ear was related to an increase in this enzyme, whereas the other enzymes played a less direct role in the mobilization of fructan reserves from the wheat stem.  相似文献   

12.
13.
In plants, cell-wall invertases fulfil important roles in carbohydrate partitioning, growth, development and crop yield. In this study, we report on different X-ray crystal structures of Arabidopsis thaliana cell-wall invertase 1 (AtcwINV1) mutants with sucrose. These structures reveal a detailed view of sucrose binding in the active site of the wild-type AtcwINV1. Compared to related enzyme-sucrose complexes, important differences in the orientation of the glucose subunit could be observed. The structure of the E203Q AtcwINV1 mutant showed a complete new binding modus, whereas the D23A, E203A and D239A structures most likely represent the productive binding modus. Together with a hydrophobic zone formed by the conserved W20, W47 and W82, the residues N22, D23, R148, E203, D149 and D239 are necessary to create the ideal sucrose-binding pocket. D239 can interact directly with the glucose moiety of sucrose, whereas K242 has an indirect role in substrate stabilization. Most probably, K242 keeps D239 in a favourable position upon substrate binding. Unravelling the exact position of sucrose in plant cell-wall invertases is a necessary step towards the rational design of superior invertases to further increase crop yield and biomass production.  相似文献   

14.
15.
16.
Fructan metabolism in leaves of Lolium rigidum Gaudin   总被引:8,自引:8,他引:0  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号