共查询到20条相似文献,搜索用时 15 毫秒
1.
Nilesh Kumar Pathak Nikhil Chander Vamsi K. Komarala R. P. Sharma 《Plasmonics (Norwell, Mass.)》2017,12(2):237-244
The role of Au@SiO2 core-shell nanoparticles on optical properties of perovskite solar cells has been explored using both the theoretical computations and the experiments. A quasi-static model is used to study the surface plasmon resonances (SPRs) of Au@SiO2 core-shell nanospheres. Au@SiO2 core-shell nanoparticles, with varying shell thickness and core radius, were assumed to be embedded in methylammonium lead triiodide (CH3NH3PbI3) perovskite active layer. Enhanced absorption in the active layer is obtained due to the near-field plasmonic effect of the embedded core-shell nanoparticles. Theoretical modelling shows that a shell thickness of 1 nm and core diameter of 20 nm provide absorption enhancement in the orange-red region of the electromagnetic spectrum. Experiments performed using ~20-nm-sized Au@SiO2 core-shell nanoparticles (with a shell thickness of ~1 nm) clearly demonstrate the enhanced absorption and the resulting enhancement in photocurrent due to the plasmonic effects. An efficiency enhancement of over 18 % is obtained for the best plasmonic perovskite solar cell containing Au@SiO2 nanoparticles in Au@SiO2-TiO2 weight ratio of ~1 %. Incident photon-to-current conversion efficiency (IPCE) data also showed enhancement in photocurrent for the plasmonic device. The quasi-static modelling approach provides a good correlation between theory and experiment. 相似文献
2.
Michael Franiatte Laurent Richard Marcel Elie Chinh Nguyen-Trung Erwan Perfetti Douglas E. LaRowe 《Origins of life and evolution of the biosphere》2008,38(2):139-148
An experimental study has been carried out on the stability of adenine (one of the five nucleic acid bases) under hydrothermal conditions. The experiments were performed in sealed autoclaves at 300 degrees C under fugacities of CO(2), N(2) and H(2) supposedly representative of those in marine hydrothermal systems on the early Earth. The composition of the gas phase was obtained from the degradation of oxalic acid, sodium nitrite and ammonium chloride, and the oxidation of metallic iron. The results of the experiments indicate that after 200 h, adenine is still present in detectable concentration in the aqueous phase. In fact, the concentration of adenine does not seem to be decreasing after approximately 24 h, which suggests that an equilibrium state may have been established with the inorganic constituents of the hydrothermal fluid. Such a conclusion is corroborated by independent thermodynamic calculations. 相似文献
3.
Tomé M Jiménez AJ Richter H Vio K Bermúdez-Silva FJ Rodríguez EM Pérez-Fígares JM 《Cell and tissue research》2004,317(1):65-77
Dopamine receptors have been found in certain populations of non-neuronal cells in the brain, viz., discrete areas of ciliated ependyma and the ependymal cells of the choroid plexus. We have studied the presence of both tyrosine-hydroxylase-immunoreactive nerve fibers and dopamine receptors in the subcommissural organ (SCO), an ependymal brain gland that is located in the roof of the third ventricle and that secretes, into the cerebrospinal fluid, glycoproteins that aggregate to form Reissners fiber (RF). Antibodies against D2, D3, D4, and D5 dopamine receptors were used in immunoblots of bovine striatum, fresh SCO, and organ-cultured SCO, and in immunocytochemistry of the bovine, rat, and mouse SCO. Only a few tyrosine-hydroxylase fibers appeared to reach the SCO. However, virtually all the secretory ependymal and hypendymal cells of the SCO immunoreacted with antibodies against D2, D4, and D5 receptors, with the last-mentioned rendering the strongest reaction, especially at the ventricular cell pole of the secretory ependymocytes, suggesting that dopamine might reach the SCO via the cerebrospinal fluid. The antibodies against the four subtypes of receptors revealed corresponding bands in immunoblots of striatum and fresh SCO. Although the cultured SCO displayed dopamine receptors, dopamine had no apparent effect on the expression of the SCO-spondin gene/protein or on the release of RF-glycoproteins (SCO-spondin included) by SCO explants, suggesting that dopamine affects the function(s) of the SCO differently from the secretion of RF-glycoproteins.Financial support was provided by grants PI 030756 and Red CIEN, Instituto de Salud Carlos III, Spain (to J.M.P.F.), and 1030265 from Fondecyt, Chile (to E.M.R.) 相似文献
4.
A density functional theory (DFT) study of cct-As, ccc, and cct-CO isomers of the ruthenium dihydride complex RuH2(CO)2(AsMe2Ph)2 is reported (see Scheme for the labeling isomer 34 structures of RuH2(CO)2(AsMe2Ph)2). Complex geometries and relative energies of different isomers have been calculated with both B3LYP and M06-2X functionals. The results show that the B3LYP calculated Boltzmann populations of cct-As, ccc, and cct-CO isomers are 65.5, 34.2, and 0.3%, respectively. These are in better agreement with the experimental data than those calculated at the M06-2X level. However, the calculations of 1H NMR chemical shifts were found to be better described with M06-2X than with B3LYP or with HF level of theories. In addition, a transition state between the two most stable isomers was determined through DFT/(B3LYP or M06-2X) calculations. 相似文献
5.
Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICS π z z ) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor “highly electron delocalized”? and “non-classical”? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3–center 2–electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C–Si–Si and C–Ge–Ge), and a σ-3c-2e bond (Si–H–Si, Ge–H–Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0) π z z =--6.2 to –8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (–13.3 ppm). 相似文献
6.
Mario Janda Marcela Morvova Zdenko Machala Imrich Morva 《Origins of life and evolution of the biosphere》2008,38(1):23-35
The chemistry induced by atmospheric pressure DC discharges above a water surface in CO(2)/N(2)/H(2)O mixtures was investigated. The gaseous mixtures studied represent a model prebiotic atmosphere of the Earth. The most remarkable changes in the chemical composition of the treated gas were the decomposition of CO(2) and the production of CO. The concentration of CO increased logarithmically with the increasing input energy density and an increasing initial concentration of CO(2) in the gas. The highest achieved concentration of CO was 4.0 +/- 0.6 vol. %. The production of CO was crucial for the synthesis of organic species, since reactions of CO with some reactive species generated in the plasma, e. g. H* or N* radicals, were probably the starting point in this synthesis. The presence of organic species (including the tentative identification of some amino acids) was demonstrated by the analysis of solid and liquid samples by high-performance liquid chromatography, infrared absorption spectroscopy and proton-transfer-reaction mass spectrometry. Formation of organic species in a completely inorganic CO(2)/N(2)/H(2)O atmosphere is a significant finding for the theory of the origins of life. 相似文献
7.
The interaction of cis-[PtCl2(Me2SO)2] with human serum albumin (HSA) and the sensitivity of the complex to heat denaturation as dependent on the duration of incubation have been studied by UV absorption and fluorescence spectroscopy. Optimal conditions for cis-[PtCl2(Me2SO)2] binding to HSA have been determined. The results are compared with the data for the HSA-cisplatin complex. It has been found that binding of HSA with cis-[PtCl2(Me2SO)2] does not result in significant structural changes of the protein. 相似文献
8.
A theoretical study of a sandwich compound with a metal monolayer sheet between two aromatic ligands is presented. A full
geometry optimization of the [Au3Cl3Tr2]2+ (1) compound, which is a triangular gold(I) monolayer sheet capped by chlorines and bounded to two cycloheptatrienyl (Tr)
ligands was carried out using perturbation theory at the MP2 computational level and DFT. Compound (1) is in agreement with
the 18–electron rule, the bonding nature in the complex may be interpreted from the donation interaction coming from the Tr
rings to the Au array, and from the back-donation from the latter to the former. NICS calculations show a strong aromatic
character in the gold monolayer sheet and Tr ligands; calculations done with HOMA, also report the same aromatic behavior
on the cycloheptatrienyl fragments giving us an insight on the stability of (1). The Au –Au bond lengths indicate that an
intramolecular aurophilic interaction among the Au(I) cations plays an important role in the bonding of the central metal
sheet.
Figure (a) Ground state geometry of complex 1; (b) Top view of compound 1 and Wiberg bond orders computed with the MP2/B1 computational method; (c) Lateral view of compound 1 and NICS values calculated with the MP2/B1 method; the values in parenthesis were obtained at the VWN/TZP level 相似文献
9.
Metal oxide semiconductors (MOS) are important and promising materials in optoelectronics, and it has been widely used in various catalytic applications such as gas sensing due to its high reactivity with many gases. In current work, mixtures of SnO2-WO3 (1:1) were prepared to synthesize nanostructured thin films by pulsed laser deposition as gas sensors. The sensitivity of sensors was measured for a relatively low concentration (200 ppm) of NO2 gas at room temperature; sensors prepared with target exposed to (200) laser shots have higher sensitivity with a maximum value of 96.49 % at time 65 s as compared with the sensors prepared with (150) laser shots where the sensitivity has a maximum value 71.82 % at time 110 s; XRD pattern shows a better crystalline and high intensity with increasing laser shots up to 200; scanning electron microscopy (SEM) micrographs show approximate homogeneity of grains that cover the substrate without cracks and pinholes with nanoparticles fall in micro and nanometer range 50–200 nm. The values of the direct band gap were found to be 2.07143 eV for films prepared with 150 laser shots and 2.02899 eV for films prepared with 200 laser shots which have higher absorbance than the former films due to the increment in thickness and particle size. Empirical equations between sensitivity and gas exposure time have been formulated with great coincidence with the experimental data. 相似文献
10.
S. N. Dobryakov O. N. Brzhewska T. A. Lozinova O. S. Nedelina 《Doklady. Biochemistry and biophysics》2004,399(1-6):354-357
11.
Yao-Dong Song Liang Wang Li-Ming Wu Qiao-Ling Chen Fa-Kun Liu Xiao-Wen Tang 《Journal of molecular modeling》2016,22(2):50
In this paper, we report a study on the structure and first hyperpolarizability of C60Cl2 and C60F2. The calculation results show that the first hyperpolarizabilities of C60Cl2 and C60F2 were 172 au and 249 au, respectively. Compared with the fullerenes, the first hyperpolarizability of C60Cl2 increased from 0 au to 172 au, while the first hyperpolarizability of C60F2 increased from 0 au to 249 au. In order to further increase the first hyperpolarizability of C60Cl2 and C60F2, Li@C60Cl2 and Li@C60F2 were obtained by introducing a lithium atom to C60Cl2 and C60F2. The first hyperpolarizabilities of Li@C60Cl2 and Li@C60F2 were 2589 au and 985 au, representing a 15-fold and 3.9-fold increase, respectively, over those of C60Cl2 and C60F2. The transition energies of four molecules (C60Cl2, Li@C60Cl2, C60F2, Li@C60F2) were calculated, and were found to be 0.17866 au, 0.05229 au, 0.18385 au, and 0.05212 au, respectively. A two-level model explains why the first hyperpolarizability increases for Li@C60Cl2 and Li@C60F2. 相似文献
12.
Septelean R Petrar PM Gabriela N Escudié J Silaghi-Dumitrescu I 《Journal of molecular modeling》2011,17(7):1719-1725
DFT calculations have been performed on the derivatives of formula CH2OP2 to determine their total energy, the relative energy between the isomers and their geometry. Among compounds with a P-C-P
linkage, the most stable one is the 2-hydroxy-1,2-diphosphirene II.1, a three-membered heterocycle with a P=C unsaturation. The phosphavinylidene(oxo)phosphorane HP=C=P(O)H IV.5 (which has the same skeleton as the experimentally obtained Mes*P=C=P(O)Mes*) lies 36.30 kcal mol-1 above it. The least stable compounds are carbenes; the singlet carbenes are more stable than the triplet ones. 相似文献
13.
Glucose oxidase (GOD) was covalently immobilized onto Fe3O4/SiO2 magnetic nanoparticles (FSMNs) using glutaraldehyde (GA). Optimal immobilization was at pH 6 with 3-aminopropyltriethoxysilane
at 2% (v/v), GA at 3% (v/v) and 0.143 g GOD per g carrier. The activity of immobilized GOD was 4,570 U/g at pH 7 and 50°C.
The immobilized GOD retained 80% of its initial activity after 6 h at 45°C while free enzyme retained only 20% activity. The
immobilized GOD maintained 60% of its initial activity after 6 cycles of repeated use and retained 75% of its initial activity
after 1 month at 4°C whereas free enzymes retained 62% of its activity. 相似文献
14.
Selective effects of H<Subscript>2</Subscript>O<Subscript>2</Subscript> on cyanobacterial photosynthesis 总被引:3,自引:0,他引:3
The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested
cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes
in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible
for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new
agents to combat cyanobacterial bloom formation in water reservoirs. 相似文献
15.
Zoccarato F Miotto C Cavallini L Alexandre A 《Journal of bioenergetics and biomembranes》2011,43(4):359-366
In brain mitochondria succinate activates H2O2 release, concentration dependently (starting at 15 μM), and in the presence of NAD dependent substrates (glutamate, pyruvate,
β-hydroxybutyrate). We report that TCA cycle metabolites (citrate, isocitrate, α-ketoglutarate, fumarate, malate) individually
and quickly inhibit H2O2 release. When they are present together at physiological concentration (0.2, 0.01, 0.15, 0.12, 0.2 mM respectively) they
decrease H2O2 production by over 60% at 0.1–0.2 mM succinate. The degree of inhibition depends on the concentration of each metabolite.
Acetoacetate is a strong inhibitor of H2O2 release, starting at 10 μM and acting quickly. It potentiates the inhibition induced by TCA cycle metabolites. The action
of acetoacetate is partially removed by β-hydroxybutyrate. Removal is minimal at 0.1 mM acetoacetate, and is higher at 0.5 mM
acetoacetate. We conclude that several inhibitors of H2O2 release act jointly and concentration dependently to rapidly set the required level of H2O2 generation at each succinate concentration. 相似文献
16.
In this work, the structural, compositional, optical, and dielectric properties of Ga2S3 thin films are investigated by means of X-ray diffraction, scanning electron microscopy, energy dispersion X-ray analysis, and ultraviolet—visible light spectrophotometry. The Ga2S3 thin films which exhibited amorphous nature in its as grown form are observed to be generally composed of 40.7 % Ga and 59.3 % S atomic content. The direct allowed transitions optical energy bandgap is found to be 2.96 eV. On the other hand, the modeling of the dielectric spectra in the frequency range of 270–1,000 THz, using the modified Drude-Lorentz model for electron-plasmon interactions revealed the electrons scattering time as 1.8 (fs), the electron bounded plasma frequency as ~0.76–0.94 (GHz) and the reduced resonant frequency as 2.20–4.60 ×1015 (Hz) in the range of 270–753 THz. The corresponding drift mobility of electrons to the terahertz oscillating incident electric field is found to be 7.91 (cm 2/Vs). The values are promising as they nominate the Ga2S3 thin films as effective candidates in thin-film transistor and gas sensing technologies. 相似文献
17.
Jingjing Jia Ting Zhang Jieshan Chi Xiaoma Liu Jingjing Sun Qizhi Xie Sijia Peng Changyan Li Li Yi 《Neurochemical research》2018,43(7):1439-1453
18.
A comparison of three labeling strategies for studies involving side chain methyl groups in high molecular weight proteins,
using 13CH3,13CH2D, and 13CHD2 methyl isotopomers, is presented. For each labeling scheme, 1H–13C pulse sequences that give optimal resolution and sensitivity are identified. Three highly deuterated samples of a 723 residue
enzyme, malate synthase G, with 13CH3,13CH2D, and 13CHD2 labeling in Ile δ1 positions, are used to test the pulse sequences experimentally, and a rationalization of each sequence’s
performance based on a product operator formalism that focuses on individual transitions is presented. The HMQC pulse sequence
has previously been identified as a transverse relaxation optimized experiment for 13CH3-labeled methyl groups attached to macromolecules, and a zero-quantum correlation pulse scheme (13CH3 HZQC) has been developed to further improve resolution in the indirectly detected dimension. We present a modified version
of the 13CH3 HZQC sequence that provides improved sensitivity by using the steady-state magnetization of both 13C and 1H spins. The HSQC and HMQC spectra of 13CH2D-labeled methyl groups in malate synthase G are very poorly resolved, but we present a new pulse sequence, 13CH2D TROSY, that exploits cross-correlation effects to record 1H–13C correlation maps with dramatically reduced linewidths in both dimensions. Well-resolved spectra of 13CHD2-labeled methyl groups can be recorded with HSQC or HMQC; a new 13CHD2 HZQC sequence is described that provides improved resolution with no loss in sensitivity in the applications considered here.
When spectra recorded on samples prepared with the three isotopomers are compared, it is clear that the 13CH3 labeling strategy is the most beneficial from the perspective of sensitivity (gains ≥2.4 relative to either 13CH2D or 13CHD2 labeling), although excellent resolution can be obtained with any of the isotopomers using the pulse sequences presented
here. 相似文献
19.
Barley seedlings were pre-treated with 1 and 5 μM H2O2 for 2 d and then supplied with water or 150 mM NaCl for 4 and 7 d. Exogenous H2O2 alone had no effect on the proline, malondialdehyde (MDA) and H2O2 contents, decreased catalase (CAT) activity and had no effect on peroxidase (POX) activity. Three new superoxide dismutase
(SOD) isoenzymes appeared in the leaves as a result of 1 μM H2O2 treatment. NaCl enhanced CAT and POX activity. SOD activity and isoenzyme patterns were changed due to H2O2 pre-treatment, NaCl stress and leaf ageing. In pre-treated seedlings the rate of 14CO2 fixation was higher and MDA, H2O2 and proline contents were lower in comparison to the seedlings subjected directly to NaCl stress. Cl− content in the leaves 4 and 7 d after NaCl supply increased considerably, but less in pre-treated plants. It was suggested
that H2O2 metabolism is involved as a signal in the processes of barley salt tolerance. 相似文献
20.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder with a prevalence of 1–2% in people over the age of 50.
Mitochondrial dysfunction occurred in PD patients showing a 15–30% loss of activity in complex I. Asiatic acid (AA), a triterpenoid,
is an antioxidant and used for depression treatment, but the effect of AA against PD-like damage has never been reported.
In the present study, we investigated the protective effects of AA against H2O2 or rotenone-induced cellular injury and mitochondrial dysfunction in SH-SY5Y cells. Mitochondrial membrane potential (MMP)
and the expression of voltage-dependent anion channel (VDAC) were detected with or without AA pretreatment following cellular
injury to address the possible mechanisms of AA neuroprotection. The results showed that pre-treatment of AA (0.01–100 nM)
protected cells against the toxicity induced by rotenone or H2O2. In addition, MMP dissipation occurred following the exposure of rotenone, which could be prevented by AA treatment. More
interestingly, pre-administration of AA inhibited the elevation of VDAC mRNA and protein levels induced by rotenone(100 nM)
or H2O2 (300 μM).These data indicate that AA could protect neuronal cells against mitochondrial dysfunctional injury and suggest
that AA might be developed as an agent for PD prevention or therapy.
Special issue article in honor of Dr. Akitane Mori. 相似文献