首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The courtship behavior of Drosophilid flies has served as a long-standing model for studying the bases of animal communication. During courtship, male flies flap their wings to send a complex pattern of airborne vibrations to the antennal ears of the females. These "courtship songs" differ in their spectrotemporal composition across species and are considered a crucial component of the flies' premating barrier. However, whether the species-specific differences in song structure are also reflected in the receivers of this communication system, i.e., the flies' antennal ears, has remained unexplored. Here we show for seven members of the melanogaster species group that (1) their ears are mechanically tuned to different best frequencies, (2) the ears' best frequencies correlate with high-frequency pulses of the conspecific courtship songs, and (3) the species-specific tuning relies on amplificatory mechanical feedback from the flies' auditory neurons. As a result of its level-dependent nature, the active mechanical feedback amplification is particularly useful for the detection of small stimuli, such as conspecific song pulses, and becomes negligible for sensing larger stimuli, such as the flies' own wingbeat during flight.  相似文献   

2.
BACKGROUND: Despite having tiny brains and relatively low-resolution compound eyes, many fly species frequently engage in precisely controlled aerobatic pursuits of conspecifics. Recent investigations into high-order processing in the fly visual system have revealed a class of neurons, coined small-target-motion detectors (STMDs), capable of responding robustly to target motion against the motion of background clutter. Despite limited spatial acuity in the insect eye, these neurons display exquisite sensitivity to small targets. RESULTS: We recorded intracellularly from morphologically identified columnar neurons in the lobula complex of the hoverfly Eristalis tenax. We show that these columnar neurons with exquisitely small receptive fields, like their large-field counterparts recently described from both male and female flies, have an extreme selectivity for the motion of small targets. In doing so, we provide the first physiological characterization of small-field neurons in female flies. These retinotopically organized columnar neurons include both direction-selective and nondirection-selective classes covering a large area of visual space. CONCLUSIONS: The retinotopic arrangement of lobula columnar neurons sensitive to the motion of small targets makes a strong case for these neurons as important precursors in the local processing of target motion. Furthermore, the continued response of STMDs with such small receptive fields to the motion of small targets in the presence of moving background clutter places further constraints on the potential mechanisms underlying their small-target tuning.  相似文献   

3.
How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. For instance, it is unclear whether food increases aggression directly, or as a secondary consequence of increased social interactions caused by attraction to food. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner by which food influences aggression. We show that food promotes aggression in flies, and that it does so independently of any effect on frequency of contact between males, increase in locomotor activity or general enhancement of social interactions. Importantly, the level of aggression depends on the absolute amount of food, rather than on its surface area or concentration. When food resources exceed a certain level, aggression is diminished, suggestive of reduced competition. Finally, we show that detection of sugar via Gr5a+ gustatory receptor neurons (GRNs) is necessary for food-promoted aggression. These data demonstrate that food exerts a specific effect to promote aggression in male flies, and that this effect is mediated, at least in part, by sweet-sensing GRNs.  相似文献   

4.
Gilbert C 《Current biology : CB》2007,17(11):R412-R414
Newly described visual interneurons in flies have sophisticated receptive field properties reminiscent of neurons in the mammalian visual cortex. The cells are well-suited to compute motion of conspecific females that male flies aerially intercept.  相似文献   

5.
Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron.  相似文献   

6.
Summary The superiority of male flies over female flies in locating and intercepting small rapidly moving targets has been ascribed to differences in their visual systems. In males, this sexual dimorphism is externally expressed by an area of high visual acuity called the acute zone. Selective cobalt uptake reveals 12 types of male-specific visual interneurons in the male lobula, the axons of which terminate in neuropil supplying premotor descending neurons to neck and flight motor circuits. The dendritic fields of the individual male-specific neurons can be extrapolated out into visual space to demonstrate that each is assigned a discrete area of the visual panorama. The dendritic fields of 10 of the 12 male-specific neurons subtend areas of the retina associated with the male acute zone. The functional significance of male-specific neurons is discussed with respect to their putative receptive field and a model circuit for target location by male flies.  相似文献   

7.
An important prediction from game theory is that resource value influences the level to which competitors will escalate conflict. An earlier study considered whether this prediction applies to the male–male interactions of Hypoblemum albovittatum, a jumping spider (Salticidae) from New Zealand. The males of this species escalated conflicts in the presence of a moving mount made from a conspecific female. However, because the control was only a similar-sized motionless cork, an alternative hypothesis (that the cue for escalation is seeing movement of any female-size object, rather than seeing specifically a female) was not ruled out. Here we show that a moving cork, without a mount present, is indeed sufficient to cause males to escalate, but a moving mount (made from a conspecific female) causes males to escalate further. The level of escalation in the presence of a moving mount made from prey (housefly) or from a rival (conspecific male) did not differ significantly from the level of escalation when only a moving cork was present. These findings suggest that, although seeing a moving object similar in size to a conspecific female is sufficient for priming males to escalate, males can also discern by sight that specifically a female is present and, when they have this precise information, they make strategic decisions to escalate conflict further.  相似文献   

8.
9.
Circadian rhythms can synchronize to environmental time cues, such as light, temperature, humidity, and food availability. Previous studies have suggested that these rhythms can also be entrained by social interactions. Here, we used Drosophila melanogaster as a model to study the influence of socio-sexual interactions on the circadian clock in behavior and pacemaker neurons. If two flies of opposite sex were paired and kept in a small space, the daily activity patterns of the two flies were clearly different from the sum of the activity of single male and female flies. Compared with single flies, paired flies were more active in the night and morning, were more active during females’ active phase, and were less active during males’ active phase. These behavioral phenotypes are related to courtship behavior, but not to the circadian clock. Nevertheless, in male-female pairs of flies with clocks at different speeds (wild-type and per S flies), clock protein cycling in the DN1 pacemaker neurons in the male brain were slightly influenced by their partners. These results suggest that sexual interactions between male-female couples can serve as a weak zeitgeber for the DN1 pacemaker neurons, but the effect is not sufficient to alter rhythms of behavioral activity.  相似文献   

10.
Upon encountering a conspecific in the wild, males have to rapidly detect, integrate and process the most relevant signals to evoke an appropriate behavioral response. Courtship and aggression are the most important social behaviors in nature for procreation and survival: for males, making the right choice between the two depends on the ability to identify the sex of the other individual. In flies as in most species, males court females and attack other males. Although many sensory modalities are involved in sex recognition, chemosensory communication mediated by specific molecules that serve as pheromones plays a key role in helping males distinguish between courtship and aggression targets. The chemosensory signals used by flies include volatile and non-volatile compounds, detected by the olfactory and gustatory systems. Recently, several putative olfactory and gustatory receptors have been identified that play key roles in sex recognition, allowing investigators to begin to map the neuronal circuits that convey this sensory information to higher processing centers in the brain. Here, we describe how Drosophila melanogaster males use taste and smell to make correct behavioral choices.  相似文献   

11.
We present a computational model for target discrimination based on intracellular recordings from neurons in the fly visual system. Determining how insects detect and track small moving features, often against cluttered moving backgrounds, is an intriguing challenge, both from a physiological and a computational perspective. Previous research has characterized higher-order neurons within the fly brain, known as 'small target motion detectors' (STMD), that respond robustly to moving features, even when the velocity of the target is matched to the background (i.e. with no relative motion cues). We recorded from intermediate-order neurons in the fly visual system that are well suited as a component along the target detection pathway. This full-wave rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of opposite signs (suggesting separate ON and OFF channels) and fast adaptive temporal mechanisms, similar to other cell types previously described. From this physiological data we have created a numerical model for target discrimination. This model includes nonlinear filtering based on the fly optics, the photoreceptors, the 1(st) order interneurons (Large Monopolar Cells), and the newly derived parameters for the RTC. We show that our RTC-based target detection model is well matched to properties described for the STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model output shows that the spatiotemporal profile of small targets is sufficiently rare within natural scene imagery to allow our highly nonlinear 'matched filter' to successfully detect most targets from the background. Importantly, this model can explain this type of feature discrimination without the need for relative motion cues.  相似文献   

12.
地中海实蝇及其近缘种基因芯片检测研究   总被引:1,自引:0,他引:1  
本研究选择线粒体DNA (mtDNA) 细胞色素氧化酶Ⅰ基因(COⅠ)为分子标记基因,以双翅目实蝇科昆虫DNA序列为目标,建立了我国进境植物检疫害虫地中海实蝇Ceratitis capitata、芒果小条实蝇C. cosyra和纳塔尔小条实蝇C. rosa等生物芯片检测方法。地中海实蝇及其近缘种检测芯片由检测探针(实蝇科通用探针1条,小条实蝇属通用探针1条,地中海实蝇、芒果小条实蝇和纳塔尔小条实蝇近缘种探针2条和种特异探针4条)、质控探针(定位点探针、阳性质控、阴性质控和空白对照探针各1条)组成。芯片检测结果表明,检测探针特异性强,能实现上述3种实蝇的种类快速区分和准确鉴定; 检测方法稳定性好,地中海实蝇不同虫态(卵、幼虫、蛹和成虫)和不同地理种群检测结果完全一致。地中海实蝇生物芯片检测技术将为我国进口果蔬中检疫性实蝇快速筛查和种类鉴定提供检测方法,同时,还可应用到其他属的实蝇以及相关害虫的检疫中,为有害生物的快速鉴定提供了新方法。  相似文献   

13.
Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals suggests that taste for fatty acids (FAs) signals the presence of dietary lipids and promotes feeding. While flies appear to be attracted to fatty acids, the neural basis for fatty acid detection and attraction are unclear. Here, we demonstrate that a range of FAs are detected by the fly gustatory system and elicit a robust feeding response. Flies lacking olfactory organs respond robustly to FAs, confirming that FA attraction is mediated through the gustatory system. Furthermore, flies detect FAs independent of pH, suggesting the molecular basis for FA taste is not due to acidity. We show that low and medium concentrations of FAs serve as an appetitive signal and they are detected exclusively through the same subset of neurons that sense appetitive sweet substances, including most sugars. In mammals, taste perception of sweet and bitter substances is dependent on phospholipase C (PLC) signaling in specialized taste buds. We find that flies mutant for norpA, a Drosophila ortholog of PLC, fail to respond to FAs. Intriguingly, norpA mutants respond normally to other tastants, including sucrose and yeast. The defect of norpA mutants can be rescued by selectively restoring norpA expression in sweet-sensing neurons, corroborating that FAs signal through sweet-sensing neurons, and suggesting PLC signaling in the gustatory system is specifically involved in FA taste. Taken together, these findings reveal that PLC function in Drosophila sweet-sensing neurons is a conserved molecular signaling pathway that confers attraction to fatty acids.  相似文献   

14.
Ingested-derived DNA (iDNA) from insects represents a powerful tool for assessing vertebrate diversity because insects are easy to sample, have a diverse diet and are widely distributed. Because of these advantages, the use of iDNA for detecting mammals has gained increasing attention. Here we aimed to compare the effectiveness of mosquitoes and flies to detect mammals with a small sampling effort in a semi-controlled area, a zoo that houses native and non-native species. We compared mosquitoes and flies regarding the number of mammal species detected, the amount of mammal sequence reads recovered, and the flight distance range for detecting mammals. We also verified if the combination of two mini-barcodes (12SrRNA and 16SrRNA) would perform better than either mini-barcode alone to inform local mammal biodiversity from iDNA. To capture mosquitoes and flies, we distributed insect traps in eight sampling points during 5 days. We identified 43 Operational Taxonomic Units from 10 orders, from the iDNA of 17 mosquitoes and 46 flies. There was no difference in the number of species recovered per individual insect between mosquitoes and flies, but the number of flies captured was higher, resulting in more mammal species recovered by flies. Eight species were recorded exclusively by mosquitoes and 20 by flies, suggesting that using both samplers would allow a more comprehensive screening of the biodiversity. The maximum distance recorded was 337 m for flies and 289 m for mosquitoes, but the average range distance did not differ between insect groups. Our assay proved to be efficient for mammal detection, considering the high number of species detected with a reduced sampling effort.  相似文献   

15.
Birds combat ectoparasites with many defences but the first line of defence is grooming behaviour, which includes preening with the bill and scratching with the feet. Preening has been shown to be very effective against ectoparasites. However, most tests have been with feather lice, which are relatively slow moving. Less is known about the effectiveness of preening as a defence against more mobile and evasive ectoparasites such as hippoboscid flies. Hippoboscids, which feed on blood, have direct effects on the host such asanaemia, as well as indirect effects as vectors of pathogens. Hence, effective defence against hippoboscid flies is important. We used captive Rock Pigeons (Columba livia) to test whether preening behaviour helps to control pigeon flies (Pseudolynchia canariensis). We found that pigeons responded to fly infestation by preening twice as much as pigeons without flies. Preening birds killed twice as many flies over the course of our week-long experiment as birds with impaired preening; however, preening did not kill all of the flies. We also tested the role of the bill overhang, which is critical for effective preening against feather lice, by experimentally removing the overhang and re-measuring the effectiveness of preening against flies. Birds without overhangs were as effective at controlling flies as were birds with overhangs. Overall, we found that preening is effective against mobile hippoboscid flies, yet it does not eliminate them. We discuss the potential impact of preening on the transmission dynamics of blood parasites vectored by hippoboscid flies.  相似文献   

16.
Goense JB  Feng AS 《PloS one》2012,7(2):e31589
Natural auditory scenes such as frog choruses consist of multiple sound sources (i.e., individual vocalizing males) producing sounds that overlap extensively in time and spectrum, often in the presence of other biotic and abiotic background noise. Detection of a signal in such environments is challenging, but it is facilitated when the noise shares common amplitude modulations across a wide frequency range, due to a phenomenon called comodulation masking release (CMR). Here, we examined how properties of the background noise, such as its bandwidth and amplitude modulation, influence the detection threshold of a target sound (pulsed amplitude modulated tones) by single neurons in the frog auditory midbrain. We found that for both modulated and unmodulated masking noise, masking was generally stronger with increasing bandwidth, but it was weakened for the widest bandwidths. Masking was less for modulated noise than for unmodulated noise for all bandwidths. However, responses were heterogeneous, and only for a subpopulation of neurons the detection of the probe was facilitated when the bandwidth of the modulated masker was increased beyond a certain bandwidth - such neurons might contribute to CMR. We observed evidence that suggests that the dips in the noise amplitude are exploited by TS neurons, and observed strong responses to target signals occurring during such dips. However, the interactions between the probe and masker responses were nonlinear, and other mechanisms, e.g., selective suppression of the response to the noise, may also be involved in the masking release.  相似文献   

17.
Lee G  Park JH 《Genetics》2004,167(1):311-323
Adipokinetic hormones (AKHs) are metabolic neuropeptides, mediating mobilization of energy substrates from the fat body in many insects. In delving into the roles of the Drosophila Akh (dAkh) gene, its developmental expression patterns were examined and the physiological functions of the AKH-producing neurons were investigated using animals devoid of AKH neurons and ones with ectopically expressing dAkh. The dAkh gene is expressed exclusively in the corpora cardiaca from late embryos to adult stages. Projections emanating from the AKH neurons indicated that AKH has multiple target tissues as follows: the prothoracic gland and aorta in the larva and the crop and brain in the adult. Studies using transgenic manipulations of the dAkh gene demonstrated that AKH induced both hypertrehalosemia and hyperlipemia. Starved wild-type flies displayed prolonged hyperactivity prior to death; this novel behavioral pattern could be associated with food-searching activities in response to starvation. In contrast, flies devoid of AKH neurons not only lacked this type of hyperactivity, but also displayed strong resistance to starvation-induced death. From these findings, we propose another role for AKH in the regulation of starvation-induced foraging behavior.  相似文献   

18.
The present study aimed at determining whether and what factors affect the control of motor sequences related to interactions between conspecifics. Experiment 1 demonstrated that during interactions between conspecifics guided by the social intention of feeding, a social affordance was activated, which modified the kinematics of sequences constituted by reaching-grasping and placing. This was relative to the same sequence directed to an inanimate target. Experiments 2 and 4 suggested that the related-to-feeding social request emitted by the receiver (i.e. the request gesture of mouth opening) is prerequisite in order to activate a social affordance. Specifically, the two experiments showed that the social request to be fed activated a social affordance even when the sequences directed towards a conspecific were not finalized to feed. Experiment 3 showed that moving inside the peripersonal space of a conspecific, who did not produce any social request, marginally affected the sequence. Finally, experiments 5 and 6 indicated that the gaze of a conspecific is necessary to make a social request effective at activating a social affordance. Summing up, the results of the present study suggest that the control of motor sequences can be changed by the interaction between giver and receiver: the interaction is characterized by a social affordance that the giver activates on the basis of social requests produced by the receiver. The gaze of the receiver is a prerequisite to make a social request effective.  相似文献   

19.
Rapid and reliable detection of harmful pathogens at low levels are vital due to the related environmental and economical impact. While antibodies (monoclonal or polyclonal) are successfully employed in many immunoanalysis procedures as a biorecognition element, many of them remain costly with a comparatively short shelf life and uncertain manufacturability. Additionally, they suffer from several limitations, such as susceptibility to hostile environmental stresses such as temperature, pH, ionic strength, and cross-reactivity. The development of easy available, sensitive, and robust alternative molecular recognition elements, capable of providing a very high level of selectivity are very attractive to industry and may benefit in multiple areas. Several attempts have been made to utilize fluorescent-tagged bacteriophages and phage-displayed peptides for bacterial detection. However, involvement of complex labeling and detecting procedures make these approaches time-consuming and complicated. Here, we are reporting for the first time, the label-free detection of Staphylococcus aureus using lytic phage as highly specific and selective biorecognition element and surface plasmon resonance-based SPREETA sensor as a detection platform. Lytic phage was immobilized on the gold surface of SPREETA sensor via trouble-free direct physical adsorption. The detection limit was found to be 10(4) cfu/ml. Detection specificity was investigated by an inhibition assay while selectivity was examined with Salmonella typhimurium. The preliminary results using lytic phage as a probe for bacterial detection, in combination with SPR platform are promising and hence can be employed for rapid and label-free detection of different bacterial pathogens.  相似文献   

20.
Successful survival and reproduction of prey organisms depend on their ability to detect their potential predators accurately and respond effectively with suitable defences. Predator detection can be innate or can be acquired through learning. We studied prey–predator interactions in the larval bronzed frogs (Sylvirana temporalis), which have the innate ability to detect certain predators. We conducted a series of experiments to determine if the larval S. temporalis rely solely on innate predator detection mechanisms or can also learn to use more specific cues such as conspecific alarm cues for the purpose. The results of our study clearly indicate that larval S. temporalis use both innate and learned mechanisms for predator detection. Predator-naïve tadpoles could detect kairomones alone as a potential threat and responded by reducing activity, suggesting an innate predator detection mechanism. Surprisingly, predator-naïve tadpoles failed to detect conspecific alarm cues as a potential threat, but learned to do so through experience. After acquiring the ability to detect conspecific alarm cues, they could associate novel predator cues with conspecific alarm cues. Further, post feeding stages of larval S. temporalis are sensitive for learning to detect conspecific alarm cues to label novel predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号