首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the activities of IAA oxidase, peroxidase, ascorbicacid utilization (AAU), and in the level of paramagnetic manganese(Mn2+) have been studied during kinetin-induced growth of theisolated cucumber cotyledons in light or in dark. In kinetin-treatedcotyledons exposed to light, inhibition in the level of paramagneticmanganese corresponds with an enhancement in IAA oxidase activity.The level of paramagnetic manganese shows an inverse correlationwith IAA oxidase activity. In darkness the level of Mn2+ doesnot show the same correlation with IAA oxidase activity as inthe light. Kinetin stimulates peroxidase activity both in thelight and in darkness. Enhancement of IAA oxidase activity andno corresponding change in the level of paramagnetic manganeseindicates that the oxidation of IAA in dark-grown, kinetin-treatedcotyledons is brought about by peroxidase. It appears that thephenolic cofactors required for the oxidation of manganese andIAA may be limiting in kinetin-treated cotyledons in darkness.Thus in the light, IAA oxidation seems to be brought about byperoxidase as well as manganese, whereas in darkness it is mediatedby peroxidase alone. Increase in IAA oxidase activity duringkinetin-induced growth of the isolated cotyledons is incompatiblewith the idea that increased IAA oxidase activity would limitthe availability of auxin for growth. Kinetin does not mimicthe action of light on IAA oxidase activity; on the contrary,it removes the inhibitory effect of light on IAA oxidase activityprobably through the synthesis of IAA oxidase activators.  相似文献   

2.
Cytoplasmic and salt-extracted peroxidase and IAA oxidase activities were studied in Phaseolus vulgaris hypocotyls treated with gibberellic acid (GA, 200 μM), naphthyl acetic acid (NAA, 100 μM) and distilled water control (DW). Peroxidase activity was assayed with four hydrogen donors during the initial phase of hypocotyl elongation. Though peroxidase activity showed a decreasing trend with time in all the hydrogen donors studied; considerable variation with different hydrogen donors was observed. NAA had maximum peroxidase activity as compared to DW or GA treatment. The activity showed a clear inverse correlation with hypocotyl growth. IAA oxidase activity showed a similar trend with growth as peroxidase activity. A highly significant correlation was observed between peroxidase and IAA oxidase activities and high molecular weight xyloglucan content (P<0.001). Finally, the possible role of peroxidase and IAA oxidase activities in hypocotyl elongation growth is discussed.  相似文献   

3.
The IAA oxidase activity was studied during the culture of dormant apple embryos. The effect of different factors on this enzyme activity was investigated either by adding them to the reaction mixture or to the culture medium. Phloridzin was found to be the best phenolic cofactor. The development of IAA oxidase activity was stimulated by phloridzin and GA3. The properties of apple embryos IAA oxidase allow to postulate the presence of two enzyme systems able to oxidize IAA in the material studied. The involvement of peroxidase activity in IAA oxidation was also investigated. The differences in the changes of peroxidase and IAA oxidase activities during the culture of dormant apple embryos do not permit to consider the activity of peroxidases to be identical with that of IAA oxidase.  相似文献   

4.
CHHABRA  N.; MALIK  C. P. 《Annals of botany》1978,42(5):1109-1117
The effect of light of different wave lengths (red RL, blueBL, yellow YL, green GL and far-red FR) on pollen tube elongationhas been studied in Arachis hypogaea. Short exposure of pollento RL caused enhanced tube elongation and this effect was reducedby FR and BL. The effects of RL and FR were mutually reversible.Similarly, the inhibitory effect of blue light could be overcomeby IAA and riboflavin separately whereas acetylcholine and GA3mimicked the RL effect. The activities of peroxidase (PO) andmalate dehydrogenase (MDH) were increased by RL and IAA whereasBL increased the activity of IAA-oxidase. The regulatory roleof light of different spectral composition in controlling pollentube elongation is discussed. Arachis hypogaea, pollen tube elongation, light  相似文献   

5.
以慈竹为材料,通过叶面喷洒赤霉素(GA3)和吲哚乙酸(IAA),研究GA3和IAA对慈竹木质素生物合成相关酶活性调控效应,以及相关酶活性与木质素含量和S/G比值的关系,为慈竹优质栽培和遗传改良提供理论依据。结果表明,GA-350IAA200处理对4CL酶活性具有促进作用;而GA-3200IAA50在处理后50天时对4CL酶活性起到明显的抑制作用,而且改变了4CL酶活性的动态变化趋势。GA3和IAA对慈竹CAD酶活性具有促进作用;对PAL酶活性具有明显的抑制作用。相关分析结果表明,经过GA3和IAA处理后,4CL酶活性与木质素含量和S/G比值呈不显著的负相关关系;PAL酶活性与木质素含量呈不显著的正相关关系;CAD酶活性与木质素含量和S/G比值呈不显著的正相关或负相关关系。结论,GA3和IAA对慈竹木质素生物合成相关酶活性具有调控效应,而且这种调控作用与GA3和IAA的浓度和配比有关。  相似文献   

6.
The role of gibberellins in the growth of floral organs of Pharbitis nil   总被引:1,自引:0,他引:1  
Evidence that the synthesis of GA3 is involved in the growthof floral orga'ns of Pharbitis nil is presented. GAs in floralorgans at different developmental stages were surveyed usingTLC followed by the bioassay with two dwarf rice seedlings,‘Tanginbozu’ and ‘Waito-C’. The amountof GAs in the petal and stamen increased rapidly after the petalemerged from calyx, reached a maximum 12 hr before anthesis,then declined markedly thereafter. The GA content in the calyxremained unchanged before and after anthesis, and that in thepistil increased after anthesis. Pharbitis flowers containedat least two active GAs, one of which was probably GA3, theother appeared to be GA19. GA3 was detected in relatively largeamounts in both the petal and stamen during their rapid elongation.In the calyx, which showed little increase in fresh weight duringrapid flower growth, GA9 was the dominant GA. Exogenously suppliedGA3 promoted elongation of sections in excised young filaments.Sucrose was necessary for definite growth promotion by GA3.GA19 had little effect on filament elongation, and IAA was ratherinhibitive. (Received July 29, 1972; )  相似文献   

7.
Hormone Interaction in Apical Dominance in Phaseolus vulgaris L.   总被引:2,自引:0,他引:2  
Gibberellic acid (GA3), kinetin, and indole-3yl-acetic acid(IAA) were applied to roots of Phaseolus vulgaris under twodifferent light intensities and when either young or old leaveswere removed In all cases GA3, promoted stem and lateral growth,especially when light intensity was reduced. Promotion by GA3,of stem growth under reduced light was reduced if IAA and kinetinwere present; promotion of lateral growth under reduced lightwas reduced if IAA was added and eliminated if kinetin or kinetinplus IAA were added to GA3. Removal of young and mature leavesreduced main stem growth; removal of young leaves promoted,and of mature leaves reduced, lateral shoot growth. We suggestthat shoot growth and apical dominance are governed by the balanceof hormones present in elongating internodes. There may be twoways of modifying this balance; firstly by altering light, temperature,or nutrients, or by applying hormones generally to the plant.Secondly, local modifications can be made by removing apicesor young leaves, or applying hormones in lanolin to specificareas. Knowledge of both the general and local conditions maybe necessary for a complete understanding of apical dominance.  相似文献   

8.
Actinomycin D inhibited the elongation of epicotyl segmentsfrom azuki bean seedlings that was induced by simultaneous treatmentwith IAA and GA3. The drug also inhibited the elongation ofthe segments that was caused by IAA alone when it was appliedtogether with IAA. When the segments were pretreated with GA3and then incubated with IAA, GA3 promoted the elongation causedby IAA and brought about a predominance of transverse corticalmicrotubules (MTs) in the epidermal cells of the segments. Thechange in the arrangement of MTs caused by pretreatment withGA3 was evident 1 h after the start of subsequent incubationwith IAA when the effect of pretreatment with GA3 on the elongationhad not yet become apparent. Pretreatment with GA3 did not causeany change in the arrangement of MTs when GA3-pretreated segmentswere not incubated subsequently with IAA. Although actinomycinD applied before treatment with IAA did not inhibit the IAA-inducedelongation, the drug diminished the promotion of the elongationcaused by pretreatment with GA3 and prevented GA3 from bringingabout a predominance of transverse MTs when the drug was appliedduring the pretreatment with GA3. GA3-induced synthesis of mRNA seems to be involved in the promotionby GA3 of IAA-induced elongation and in the GA3-induced rearrangementof cortical MTs. (Received June 15, 1993; Accepted August 16, 1993)  相似文献   

9.
In etiolated cotyledons of cucumber (Cucumis sativus L. cv.Aonagajibai), preillumination with a short pulse of red lighteliminated the lag phase and stimulated Chl formation in thelinear phase during subsequent continuous illumination. Thistwofold effect was clearly distinguishable by varying the lengthsof the dark periods after preillumination. Pretreatment of excisedcotyledons with BA, GA3 ethylene, or IAA stimulated Chl formationduring subsequent illumination. The effects of BA and GA3 seemedindependent of both kinds of red light effects. However, ethyleneand IAA interacted with red light in increasing the rate ofChl formation during the linear phase. This may provide someclue to the red light action on Chl formation through its probablestimulation of ethylene production. (Received June 7, 1978; )  相似文献   

10.
Experiments were carried out to explore the involvement of gibberellins(GAs) in the light-induced germination of Arabidopsis thaliana(L.) Heynh, using wild type (WT) and phytochrome-deficient mutants(phyA, phyB and phyAphyB deficient in phytochrome A, B and Aplus B, respectively). Seed germination of WT and phytochrome-deficientmutants was inhibited by uniconazole (an inhibitor of an earlystep in biosynthesis of GA, the oxidation of ent-kaurene) andprohexadione (an inhibitor of late steps, namely, 2rß-and 3rß-hydroxylation). This inhibition was overcomeby simultaneous application of 10-5 M GA4. The relative activityof GAs for promoting germination of uniconazole-treated seedswas GA4>GA1=GA9>GA20. The wild type and the phyA and phyBmutants had an increased response to a red light pulse in thepresence of GA1, GA4, GA9, GA20 and GA24 but there were no significantdifferences in activity of each GA between the mutants. Therefore,neither phytochrome A nor hytochrome B appears to regulate GAbiosynthesis from GA12 to GA4 during seed germination, sincethe conversion of GA12 to GA9 is regulated by one enzyme (GA20-oxidase). However, GA responsiveness appears to be regulatedby phytochromes other than phytochromes A and B, since the phyAphyBdouble mutant retains the photoreversible increased responseto GAs after a red light pulse. (Received February 13, 1995; Accepted July 11, 1995)  相似文献   

11.
To demonstrate the effect of auxin on intact coleoptile growth, garlic (Allium sativum L.) cloves were inoculated in agar supplemented with DW (control), GA3 and GA3+tryptophan (a precursor of IAA, GA3+T). The coleoptiles were harvested at 24 h intervals to measure growth in terms of length, activities of IAAld DH (which convert tryptophan to IAA) and peroxidase (that oxidizes IAA). Contents of endogenous IAA and PAA were also measured by indirect ELISA. Peroxidase activity was suppressed by GA3 treatment and increased by GA3+T treatment. Although endogenous contents of IAA were increased by the addition of GA3 and even more by GA3+T in the media, there was no further increase in coleoptile length, suggesting that garlic coleoptiles are sufficient in their production of IAA.  相似文献   

12.
Gibberellic acid (GA2), kinetin, and indole-3yl-acetic acid(IAA) each at four concentrations (0, 0.5, 5, and 50 µM)were applied alone and in all possible combinations to rootsof Phaseolus vulgaris L. grown under four different light regimes(7000, 14 000, 21 000, and 28 000 lx). GA3 increased growthof main stem and laterals but reduced apical dominance, especiallyin the absence of, or at low kinetin concentrations. A highlevel of kinetin lowered GA3 induced growth of main stems and,to a lesser extent, laterals. Kinetin greatly reduced apicaldominance, especially in the absence of, or at low GA3 concentrations.IAA slightly reduced growth of main stems and laterals and slightlyincreased apical dominance. Generally the magnitude of the IAAeffects were less than those of GA3 or kinetin and there wereless interaction between IAA and other factors than betweenGA3 or kinetin and other factors. Light affected growth of bothmain stem and laterals but the effect was dependent on GA3 andkinetin levels and the interactions were complex. Generallya hormone balance seems to be operative with gibberellin-promotinggrowth of main stem and laterals and cytokinins and possiblyauxins preventing excessive elongation. Differential responsesbetween main stem and lateral may be due to different localhormone concentrations and over-all responses may be temperedby light intensity.  相似文献   

13.
Segments excised from the upper and the lower parts of cowpea(Vigna unguiculata L.) hypocotyls were compared in terms oftheir responses to exogenous indole-3-acetic acid (IAA) in relationto their endogenous levels of gibberellin. Growth of the segmentswas measured continuously during xylem perfusion with a lineardifferential transformer. IAA induced a burst of elongationin the upper segments but only slight promotion of growth inthe lower segments. Treatment with uniconazole, a potent inhibitorof the biosynthesis of gibberellins, reduced the responsivenessof the upper segments to exogenous IAA to about one half ofthe control value. Pre-perfusion with GA3 of such segments fortwo hours prior to application of IAA, partially restored theresponsiveness to IAA. Analysis by GC/MS identified GA1, GA4,GA9 GA20 and GA51 as native gibberellins in the hypocotyls ofcowpea seedlings. Analysis by GC/SIM also showed that the physiologicallyactive gibberellins (GA1 and GA4) were located mainly in theupper part of the hypocotyl and the treatment with uniconazolemarketly reduced the endogenous level of gibberellins thereto less than 11% of the control level. These results suggestthat levels of endogenous gibberellins possibly control theresponse to IAA in these segments. (Received May 12, 1994; Accepted November 15, 1994)  相似文献   

14.
Phaseolus multiflorus plants at three stages of developmentwere decapitated either immediately below the apical bud orlower down at a point 1 cm above the insertion of the primaryleaves. Growth regulators in lanolin were applied to the cutstem surface. IAA always inhibited axillary bud elongation anddry-matter accumulation, and enhanced internode dry weight butnot elongation. GA3 applied below the apical bud greatly increasedinternode elongation and dry weight, but simultaneously reducedbud elongation and dry-weight increase. Application of GA3 1cm above the buds had no effect on bud elongation in the youngestplants, but enhanced their elongation in the two older groups.IAA always antagonized GA3-enhancement of internode extensiongrowth, whereas its effects on GA3-enhanced dry-matter accumulationdepended on the stage of internode development. Bud elongationwas greater in plants treated with GA3+IAA than in plants treatedonly with IAA, except in the youngest plants decapitated immediatelybelow the apical bud, where GA3 caused a slight increase inIAA-induced bud inhibition. GA3 increased inhibition of buddry weight by IAA in the two youngest groups of plants, butslightly reduced it in the oldest plants. No simple compensatorygrowth relationship existed between internode and buds. It wasconcluded that, (1) auxin appears to be the principal growthhormone concerned in correlative inhibition, and (2) availabilityof gibberellin to internode and buds is of importance as a modifyingfactor in auxin-regulated apical dominance by virtue of itslocal effects on growth in the internode and in the buds.  相似文献   

15.
Effects of plant hormones were examined on the dark- and light-inducedmovements of Cassia fasciculata. Indole-3-acetic acid (IAA),gibberellic acid (GA3) and 6-benzylaminopurine (6-BAP) inhibitedthe scotonastic movement whereas abscisic acid (ABA) enhancedit. After brief treatments (5 to 30 min), the ABA effect wasinhibitory rather than promotional. Hormonal treatment in theacidic range gave the best physiological response for ABA, butthe greatest efficiency of IAA, GA3 and 6-BAP was obtained withpH values close to neutrality. Three to 5 h were needed beforeexpression of the physiological effect triggered by GA3 and6-BAP, while 5 min treatments were sufficient for IAA and ABA.Light-induced movements were largely enhanced by IAA and slightlyby GA3 but inhibited by 6-BAP and ABA. The results are discussedin relation to the ionic changes in the pulvinar motor cells,regulating leaflet movements. Key words: Abscisic acid, auxins, cytokinins, gibberellic acid, pulvinar movements  相似文献   

16.
IAA-induced growth of light-grown cucumber hypocotyl sectionsis markedly enhanced by GA3-pretreatment of the sections; thereis a distinct synergism between IAA and GA3. Water pretreatmentalso enhances IAA-induced growth. On the other hand, IAA-pretreatedsections showed practically no further growth in response topost treatment with GA3. The enhancing effect of GA3 is obtainedwith only 30 min pretreatment, the maximum effect occuring with2 hr pretreatment. Pretreatment longer than 8 hr is less effective.This enhancing effect of GA3 can be observed soon after posttreatment with IAA. The response of GA3-pretreated sectionsto IAA is greater in pretreatment with higher concentrationsof GA3, and higher degrees of synergism between IAA and GA3are obtained at IAA concentrations less than 10-4 M. This synergisticinteraction between GA3 and IAA is more marked in aged hypocotylsections than in young sections. From these results we concludedthat gibberellin sensitizes hypocotyl cells to the subsequenteffect of auxin on cell elongation. (Received October 6, 1973; )  相似文献   

17.
The kinetics of extension induced by GA31 in the hypocotyl ofintact seedlings of Lactuca sativa are similar in the dark andin the light, and differs fundamentally from the kinetics ofelongation in the dark without GA3. Both in continuous lightand in the dark, GA3-induced promotion starts 24 h after incubation.In the dark, even low concentrations of GA3, which do not affectthe length measured after 6 d when the extension of hypocotylalmost ceases, remove the lag period of 48 h which precedesextension, and prolong the high rate of elongation. FollowingGA3 supply the hypocotyl length in the dark and in the lightdoes not differ until 48 h; thereafter the rate of elongationin the light is less, so that the final length of the hypocotylis 40 per cent shorter than that of the dark-grown seedlingswithout GA3. IAA supplied apically to light-grown seedlings induces a weakpromotion at a concentration of 1 mg l–1 only. With anincreasing concentration of GA3 supplied simultaneously, theconcentration of IAA inducing a significant promotion decreases.A combined supply of both these regulators, however, does notrestore the light-mediated inhibition of hypocotyl elongationcompletely. The maximum decrease in hypocotyl length induced by the growthretardants AMO-1618, CCC, and B-9 supplied from the beginningin the dark does not exceed 70 per cent. Saturating doses ofGA3 supplied in combination with any one of the retardants compensateonly a fraction of the decrease. The results have been interpreted to show that native GAs arenot involved in extension growth in the dark.  相似文献   

18.
Dry lettuce seeds (Lactuca sativa L. cv. Grand Rapids), whichreceived 5 min far-red light (FR) 0.5 h after the onset of waterimbibition, showed 17% and 50% germination without and withacid immersion treatment (pH 0.1) for 1 h and rinsing with water,respectively. The acid treatment caused only 6% germinationor less in FR-treated seeds held for 10 to 30 d in dark storage.The 10 to 30 d skotodormant seeds did not respond to red light(R) or gibberellin A3 (GA3) singly, but showed 84% or higherpercentage germination if 1 h acid immersion was given beforeR or GA3. The 20 d skotodormant seeds, which received R treatmentat day 10 but remained dormant showed 89% germination with onlyacid treatment. Similar values were obtained with 30 d skotodormantseeds which received one or two R treatments at day 10 or 20,i.e. the only requirement for these R-treated dormant seedswas an acid immersion. This releases the skotodormancy and rendersthe seeds more sensitive to R or GA3, but the skotodormancywas initiated again if no light or hormone treatments were givenimmediately. The repetitive R or GA3 treatments, which did notcause skotodormant seeds to germinate, lessened the degree ofskotodormancy. The germination of these skotodormant seeds canonly be induced by the synergistic action of R and GA3. In thisstudy, GA3 caused higher germination percentages in R-treatedskotodormant seeds than R stimulated in GA3-treated seeds. Itis suggested that (i) repetitive R or Ga3 treatments maintaina high endogenous level of the far-red-absorbing form of phytochrome(Pfr) and GA activity, respectively, (ii) the accumulated stableintermediates of phytochrome persist in fully-imbibed skotodormantseeds for up to 20 d, without phytochrome expressing its functionuntil the seeds are acidified and (iii) a model is formulatedto interpret the results of acidification, growth promotersand R effects on germination of light-sensitive lettuce seeds. Key words: Phytochrome, Latuca saliva, seed germination, dark reversion of phytochrome, gibberellin A3, acidification, skotodormancy  相似文献   

19.
GA3和IAA对慈竹综纤维和叶绿素含量动态积累的调控效应   总被引:2,自引:2,他引:0  
以慈竹为材料,研究不同浓度和配比的GA3和IAA对综纤维和叶绿素含量动态积累的调控效应,为纸浆用竹的遗传改良研究提供理论依据。研究结果表明, GA3和IAA处理对慈竹综纤维动态积累调控作用具有差异。处理前30 d内,GA350IAA200处理慈竹综纤维积累强度高于GA3200IAA50处理,40~50 d时,则反之。GA3和IAA处理的综纤维最终水平明显高于空白对照,差异达极显著水平。GA3和IAA处理能提高慈竹叶绿素含量,GA3200IAA50处理慈竹叶绿素含量高于GA350IAA200处理。相关分析结果表明,叶绿素含量与综纤维含量间呈不显著正相关关系。  相似文献   

20.
兰州百合鳞茎发育及低温解除休眠过程中内源激素的变化   总被引:2,自引:0,他引:2  
以兰州百合为试材,研究了鳞茎发育过程中以及2、6、10℃条件下保湿贮藏101 d内母鳞茎与新鳞茎中内源激素的变化。结果表明:鳞茎发育过程中内源ABA含量以及母鳞茎的GA3与ZR含量增加,而内源IAA含量以及新鳞茎的GA3与ZR含量下降。低温贮藏期间,母鳞茎与新鳞茎的GA3、IAA含量均有升高过程,而ABA含量呈下降趋势;新鳞茎的ZR含量呈下降趋势,母鳞茎的ZR含量也有升高过程。低温处理初期的34 d内,内源激素变化最为显著。不同贮藏温度相比较,ABA含量差异不大,GA3含量随温度升高而下降。在富含淀粉的新鳞茎中,GA3和ABA表现出极显著的负相关关系,而在淀粉含量较低的母鳞茎中GA3和ABA无相关性。通径分析结果表明,母鳞茎与新鳞茎的物质代谢机制不同,母鳞茎的物质变化受内源GA3的调控,新鳞茎主要是ABA作用的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号