首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In a search for the non-muscle equivalent of calsequestrin (the low-affinity high-capacity Ca2(+)-binding protein responsible for Ca2+ storage within the terminal cisternae of the sarcoplasmic reticulum), acidic proteins were extracted from rat liver and brain microsomal preparations and purified by column chromatography. No calsequestrin was observed in these extracts, but the N-terminal amino acid sequence of the major Ca2(+)-binding protein of the liver microsomal fraction was determined and found to correspond to that of calreticulin. This protein was found to bind approx. 50 mol of Ca2+/mol of protein, with low affinity (average Kd approx. 1.0 mM). A monoclonal antibody, C6, raised against skeletal-muscle calsequestrin cross-reacted with calreticulin in SDS/PAGE immunoblots, but polyclonal antibodies reacted with native calreticulin only weakly, or not at all, after SDS denaturation. Immuno-gold decoration of liver ultrathin cryosections with affinity-purified antibodies against liver calreticulin revealed luminal labelling of vacuolar profiles indistinguishable from calciosomes, the subcellular structures previously identified by the use of anti-calsequestrin antibodies. We conclude that calreticulin is the Ca2(+)-binding protein segregated within the calciosome lumen, previously described as being calsequestrin-like. Because of its properties and intraluminal location, calreticulin might play a critical role in Ca2+ storage and release in non-muscle cells, similar to that played by calsequestrin in the muscle sarcoplasmic reticulum.  相似文献   

2.
Recombinant calreticulin and discrete domains of calreticulin were expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and their Ca2+ binding properties were determined. Native calreticulin bound 1 mol of Ca2+/mol of protein with high affinity, and also bound approximately 20 mol of Ca2+/mol of protein with low affinity. Both Ca2+ binding sites were present in the recombinant calreticulin indicating that proper folding of the protein was achieved using this system. Calreticulin is structurally divided into three distinct domains: the N-domain encompassing the first 200 residues; the P-domain which is enriched in proline residues (residue 187-317); and the C-domain which covers the carboxyl-terminal quarter of the protein (residues 310-401), and contains a high concentration of acidic residues. These domains were expressed in E. coli, isolated, and purified, and their Ca2+ binding properties were analyzed. The C-domain bound approximately 18 mol of Ca2+/mol of protein with a dissociation constant of approximately 2 mM. The P-domain bound approximately 0.6-1 mol of Ca2+/mol of protein with a dissociation constant of approximately 10 microM. The P-domain and the C-domain, when expressed together as the P+C-domain, bound Ca2+ with both high affinity and low affinity, reminiscent of both full length recombinant calreticulin and native calreticulin. In contrast the N-domain, did not bind any detectable amount of 45Ca2+. We conclude that calreticulin has two quite distinct types of Ca2+ binding sites, and that these sites are in different structural regions of the molecule. The P-domain binds Ca2+ with high affinity and low capacity, whereas the C-domain binds Ca2+ with low affinity and high capacity.  相似文献   

3.
In the present study, we have shown that calreticulin is a major Ca(2+)-sequestering protein in pancreatic microsomes. This protein is a peripheral membrane protein and could be extracted from the microsomal membrane with carbonate buffer at pH 11.4. Calreticulin was identified in the membrane fractions by immunoblotting with a specific antibody, by a 45Ca2+ overlay technique, and by NH2-terminal amino acid analysis of the purified protein. Immunocytochemical localization of calreticulin in pancreatic acinar cells and pancreatic fibroblasts showed that the protein is localized to the ER membranes in these cells. We were unable to detect calsequestrin or any calsequestrin-like proteins in the pancreas and found no evidence for the existence of large numbers of specialized, calreticulin-containing vesicles which could be an equivalent of the calsequestrin-containing calciosomes previously reported in this tissue. Purified pancreatic calreticulin binds Ca2+ with both a low and a high capacity (approximately 1 mol of Ca2+/mol of protein and approximately 20-23 mol of Ca2+/mol of protein). The concentrations of Ca2+ required for half-maximal saturation of the low and high capacity sites were approximately 4-6 microM and approximately 1.5 mM, respectively. We conclude that calreticulin, which is confined to the lumen of the ER, plays a major role in Ca2+ storage in pancreatic cells.  相似文献   

4.
Ca2+ regulation of interactions between endoplasmic reticulum chaperones   总被引:4,自引:0,他引:4  
Casade Blue (CB), a fluorescent dye, was used to investigate the dynamics of interactions between endoplasmic reticulum (ER) lumenal chaperones including calreticulin, protein disulfide isomerase (PDI), and ERp57. PDI and ERp57 were labeled with CB, and subsequently, we show that the fluorescence intensity of the CB-conjugated proteins changes upon exposure to microenvironments of a different polarity. CD analysis of the purified proteins revealed that changes in the fluorescence intensity of CB-ERp57 and CB-PDI correspond to conformational changes in the proteins. Using this technique we demonstrate that PDI interacts with calreticulin at low Ca2+ concentration (below 100 microM), whereas the protein complex dissociates at >400 microM Ca2+. These are the Ca2+ concentrations reminiscent of Ca2+ levels found in empty or full ER Ca2+ stores. The N-domain of calreticulin interacts with PDI, but Ca2+ binding to the C-domain of the protein is responsible for Ca2+ sensitivity of the interaction. ERp57 also interacts with calreticulin through the N-domain of the protein. Initial interaction between these proteins is Ca2+-independent, but it is modulated by Ca2+ binding to the C-domain of calreticulin. We conclude that changes in ER lumenal Ca2+ concentration may be responsible for the regulation of protein-protein interactions. Calreticulin may play a role of Ca2+ "sensor" for ER chaperones via regulation of Ca2+-dependent formation and maintenance of structural and functional complexes between different proteins involved in a variety of steps during protein synthesis, folding, and post-translational modification.  相似文献   

5.
Functional specialization of calreticulin domains   总被引:5,自引:0,他引:5       下载免费PDF全文
Calreticulin is a Ca2+-binding chaperone in the endoplasmic reticulum (ER), and calreticulin gene knockout is embryonic lethal. Here, we used calreticulin-deficient mouse embryonic fibroblasts to examine the function of calreticulin as a regulator of Ca2+ homeostasis. In cells without calreticulin, the ER has a lower capacity for Ca2+ storage, although the free ER luminal Ca2+ concentration is unchanged. Calreticulin-deficient cells show inhibited Ca2+ release in response to bradykinin, yet they release Ca2+ upon direct activation with the inositol 1,4,5-trisphosphate (InsP3). These cells fail to produce a measurable level of InsP3 upon stimulation with bradykinin, likely because the binding of bradykinin to its cell surface receptor is impaired. Bradykinin binding and bradykinin-induced Ca2+ release are both restored by expression of full-length calreticulin and the N + P domain of the protein. Expression of the P + C domain of calreticulin does not affect bradykinin-induced Ca2+ release but restores the ER Ca2+ storage capacity. Our results indicate that calreticulin may play a role in folding of the bradykinin receptor, which affects its ability to initiate InsP3-dependent Ca2+ release in calreticulin-deficient cells. We concluded that the C domain of calreticulin plays a role in Ca2+ storage and that the N domain may participate in its chaperone functions.  相似文献   

6.
《The Journal of cell biology》1996,135(6):1913-1923
Calreticulin is an ubiquitous and highly conserved high capacity Ca(2+)- binding protein that plays a major role in Ca2+ storage within the lumen of the ER. Here, using L fibroblast cell lines expressing different levels of calreticulin, we show that calreticulin plays a role in the control of cell adhesiveness via regulation of expression of vinculin, a cytoskeletal protein essential for cell-substratum and cell-cell attachments. Both vinculin protein and mRNA levels are increased in cells overexpressing calreticulin and are downregulated in cells expressing reduced level of calreticulin. Abundance of actin, talin, alpha 5 and beta 1 integrins, pp125 focal adhesion kinase, and alpha-catenin is not affected by the differential calreticulin expression. Overexpression of calreticulin increases both cell- substratum and cell-cell adhesiveness of L fibroblasts that, most surprisingly, establish vinculin-rich cell-cell junctions. Upregulation of calreticulin also affects adhesion-dependent phenomena such as cell motility (which decreases) and cell spreading (which increases). Downregulation of calreticulin brings about inverse effects. Cell adhesiveness is Ca2+ regulated. The level of calreticulin expression, however, has no effect on either the resting cytoplasmic Ca2+ concentration or the magnitude of FGF-induced Ca2+ transients. Calreticulin, however, participates in Ca2+ homeostasis as its level of expression affects cell viability at low concentrations of extracellular Ca2+. Consequently, we infer that it is not the Ca2+ storage function of calreticulin that affects cell adhesiveness. Neither endogenous calreticulin nor overexpressed green fluorescent protein-calreticulin construct can be detected outside of the ER. Since all of the adhesion-related effects of differential calreticulin expression can be explained by its regulation of vinculin expression, we conclude that it is the ER-resident calreticulin that affects cellular adhesiveness.  相似文献   

7.
Calreticulin is a 60-kDa Ca(2+)-binding protein of the endo(sarco)plasmic reticulum membranes of a variety of cellular systems. The protein binds approximately 25 mol of Ca2+ with low affinity and approximately 1 mol of Ca2+ with high affinity and is believed to be a site for Ca2+ binding/storage in the lumen of the endo(sarco)plasmic reticulum. In the present study, we describe purification procedures for the isolation of recombinant and native calreticulin. Recombinant calreticulin was expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and was purified to homogeneity on glutathione-Sepharose followed by Mono Q FPLC chromatography. A selective ammonium sulfate precipitation method was developed for the purification of native calreticulin. The protein was purified from ammonium sulfate precipitates by diethylaminoethyl-Sephadex and hydroxylapatite chromatography procedures, which eliminates the need to prepare membrane fractions. The purification procedures reported here for recombinant and native calreticulin yield homogeneous preparations of the proteins, as judged by the HPLC reverse-phase chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified native and recombinant calreticulin were identified by their NH2-terminal amino acid sequences, by their Ca2+ binding properties, and by their reactivity with anticalreticulin antibodies.  相似文献   

8.
The novel Ca2+-binding protein, Scarf (skin calmodulin-related factor) belongs to the calmodulin-like protein family and is expressed in the differentiated layers of the epidermis. To determine the roles of Scarf during stratification, we set out to identify the binding target proteins by affinity chromatography and subsequent analysis by mass spectrometry. Several binding factors, including 14-3-3s, annexins, calreticulin, ERp72 (endoplasmic reticulum protein 72), and nucleolin, were identified, and their interactions with Scarf were corroborated by co-immunoprecipitation and co-localization analyses. To further understand the functions of Scarf in epidermis in vivo, we altered the epidermal Ca2+ gradient by acute barrier disruption. The change in the expression levels of Scarf and its binding target proteins were determined by immunohistochemistry and Western blot analysis. The expression of Scarf, annexins, calreticulin, and ERp72 were up-regulated by Ca2+ gradient disruption, whereas the expression of 14-3-3s and nucleolin was reduced. Because annexins, calreticulin, and ERp72 have been implicated in Ca2+-induced cellular trafficking, including the secretion of lamellar bodies and Ca2+ homeostasis, we propose that the interaction of Scarf with these proteins might be crucial in the process of barrier restoration. On the other hand, down-regulation of 14-3-3s and nucleolin is potentially involved in the process of keratinocyte differentiation and growth inhibition. The calcium-dependent localization and up-regulation of Scarf and its binding target proteins were studied in mouse keratinocytes treated with ionomycin and during the wound-healing process. We found increased expression and nuclear presence of Scarf in the epidermis of the wound edge 4 and 7 days post-wounding, entailing the role of Scarf in barrier restoration. Our results suggest that Scarf plays a critical role as a Ca2+ sensor, potentially regulating the function of its binding target proteins in a Ca2+-dependent manner in the process of restoration of epidermal Ca2+ gradient as well as during epidermal barrier formation.  相似文献   

9.
10.
Ca2+-dependent binding of modulator protein to the particulate fraction was studied. The particulate fraction from one gram of rat brain bound in a Ca2+-dependent fashion 144 microgram of modulator protein, representing more than one third of the total soluble modulator protein in this tissue. The binding site was present in both the mitochondrial and microsomal fractions, the specific activity of the microsomes being the higher. The binding was reversible with a physiological concentration of Ca2+, and was temperature-dependent, and the site can be saturated with modulator protein (4.5 microgram modulator protein per mg of microsomal protein). Tryptic digestion of the membranes caused complete disappearance of the binding activity, but heat-treatment for 5 min at 70 degrees C caused only 40% loss of activity. The binding site may be a known or unknown enzyme(s), the activity of which is regulated by Ca2+ and modulator. Alternatively, this binding site may be a nonenzymic protein that regulates the concentration of free modulator protein in the cell.  相似文献   

11.
Calreticulin is a 46-kDa Ca(2+)-binding chaperone of the endoplasmic reticulum membranes. The protein binds Ca(2+) with high capacity, affects intracellular Ca(2+) homeostasis, and functions as a lectin-like chaperone. In this study, we describe expression and purification procedures for the isolation of recombinant rabbit calreticulin. The calreticulin was expressed in Pichia pastoris and purified to homogeneity by DEAE-Sepharose and Resource Q FPLC chromatography. The protein was not retained in the endoplasmic reticulum of Pichia pastoris but instead it was secreted into the external media. The purification procedures reported here for recombinant calreticulin yield homogeneous preparations of the protein by SDS-PAGE and mass spectroscopy analysis. Purified calreticulin was identified by its NH(2)-terminal amino acid sequences, by its Ca(2+) binding, and by its reactivity with anti-calreticulin antibodies. The protein contained one disulfide bond between (88)Cys and (120)Cys. CD spectral analysis and Ca(2+)-binding properties of the recombinant protein indicated that it was correctly folded.  相似文献   

12.
We have earlier shown that a unique membrane-bound enzyme mediates the transfer of acetyl group(s) from polyphenolic peracetates (PA) to functional proteins, which was termed acetoxy drug: protein transacetylase (TAase) because it acted upon several classes of PA. Here, we report the purification of TAase from human placental microsomes to homogeneity with molecular mass of 60 kDa, exhibiting varying degrees of specificity to several classes of PA confirming the structure-activity relationship for the microsome-bound TAase. The TAase catalyzed protein acetylation by a model acetoxy drug, 7,8-diacetoxy-4-methyl coumarin (DAMC) was established by the demonstration of immunoreactivity of the acetylated target protein with anti-acetyl lysine antibody. TAase activity was severely inhibited in calcium-aggregated microsomes as well as when Ca2+ was added to purified TAase, suggesting that TAase could be a calcium binding protein. Furthermore, the N-terminal sequence analysis of purified TAase (EPAVYFKEQFLD) using Swiss Prot Database perfectly matched with calreticulin (CRT), a major microsomal calcium binding protein of the endoplasmic reticulum (ER). The identity of TAase with CRT was substantiated by the observation that the purified TAase avidly reacted with commercially available antibody raised against the C-terminus of human CRT (13 residues peptide, DEEDATGQAKDEL). Purified TAase also showed Ca2+ binding and acted as a substrate for phosphorylation catalyzed by protein kinase C (PKC), which are hallmark characteristics of CRT. Further, purified placental CRT as well as the commercially procured pure CRT yielded significant TAase catalytic activity and were also found effective in mediating the acetylation of the target protein NADPH cytochrome P-450 reductase by DAMC as detected by Western blot using anti-acetyl lysine antibody. These observations for the first time convincingly attribute the transacetylase function to CRT. Hence, this transacetylase function of CRT is designated calreticulin transacetylase (CRTAase). We envisage that CRTAase plays an important role in protein modification by way of acetylation independent of Acetyl CoA.  相似文献   

13.
Calreticulin is a Ca2+ -binding chaperone that resides in the lumen of the endoplasmic reticulum and is involved in the regulation of intracellular Ca2+ homeostasis and in the folding of newly synthesized glycoproteins. In this study, we have used site-specific mutagenesis to map amino acid residues that are critical in calreticulin function. We have focused on two cysteine residues (Cys(88) and Cys(120)), which form a disulfide bridge in the N-terminal domain of calreticulin, on a tryptophan residue located in the carbohydrate binding site (Trp(302)), and on certain residues located at the tip of the "hairpin-like" P-domain of the protein (Glu(238), Glu(239), Asp(241), Glu(243), and Trp(244)). Calreticulin mutants were expressed in crt(-/-) fibroblasts, and bradykinin-dependent Ca2+ release was measured as a marker of calreticulin function. Bradykinin-dependent Ca2+ release from the endoplasmic reticulum was rescued by wild-type calreticulin and by the Glu(238), Glu(239), Asp(241), and Glu(243) mutants. The Cys(88) and Cys(120) mutants rescued the calreticulin-deficient phenotype only partially ( approximately 40%), and the Trp(244) and Trp(302) mutants did not rescue it at all. We identified four amino acid residues (Glu(239), Asp(241), Glu(243), and Trp(244)) at the hairpin tip of the P-domain that are critical in the formation of a complex between ERp57 and calreticulin. Although the Glu(239), Asp(241), and Glu(243) mutants did not bind ERp57 efficiently, they fully restored bradykinin-dependent Ca2+ release in crt(-/-) cells. This indicates that binding of ERp57 to calreticulin may not be critical for the chaperone function of calreticulin with respect to the bradykinin receptor.  相似文献   

14.
Ca2+ is an essential second messenger for T cell activation, but the exact mechanisms of its action are poorly understood. The cytosolic Ca2+ concentration is significantly increased upon the stimulation of T cells with either mitogen, cross-linking antibodies, or their cognate ligands. In this study, expression of calreticulin, a major Ca(2+)-binding (storage), KDEL protein of the endoplasmic reticulum was examined in resting and concanavalin A (ConA)-stimulated mouse and human T-lymphocytes. Both resting, mouse and human lymphocytes contain very low levels of calreticulin mRNA and protein. Mouse splenocytes stimulated with ConA exhibited an induction in calreticulin mRNA which peaked by Day 4. A 5-fold increase in the immunoreactive calreticulin protein band was also observed in the cells during this period of stimulation. Similarly when human lymphocytes were cultured with ConA a significant increase in the levels of the calreticulin mRNA and protein was observed. The peak of calreticulin mRNA was observed at Day 1 rather than Day 4 as seen for the mouse. These results clearly demonstrate the presence of calreticulin, a Ca(2+)-binding protein originally characterized in muscle tissue, in activated T-lymphocytes. Furthermore, we show that expression of calreticulin correlates with T-lymphocyte activation. Our results suggest that calreticulin may be involved in the signaling pathway for the induction of Ca(2+)-dependent processes and may represent one regulatory mechanism operating in activation of T-lymphocytes.  相似文献   

15.
Calcium (Ca2+) is a universal signalling molecule involved in many aspects of cellular function. The majority of intracellular Ca2+ is stored in the endoplasmic reticulum and once Ca2+ is released from the endoplasmic reticulum, specific plasma membrane Ca2+ channels are activated, resulting in increased intracellular Ca2+. In the lumen of the endoplasmic reticulum, Ca2+ is buffered by Ca2+ binding chaperones such as calreticulin. Calreticulin-deficiency is lethal in utero due to impaired cardiac development and in the absence of calreticulin, Ca2+ storage capacity within the endoplasmic reticulum and inositol 1,4,5-trisphosphate (InsP3) receptor mediated Ca2+ release from the endoplasmic reticulum are compromised. Over-expression of constitutively active calcineurin in the heart rescues calreticulin-deficient mice from embryonic lethality. This observation indicates that calreticulin is a key upstream regulator of calcineurin in Ca2+-signalling pathways and highlights the importance of the endoplasmic reticulum and endoplasmic reticulum-dependent Ca2+ homeostasis for cellular commitment and tissue development during organogenesis. Furthermore, Ca2+ handling by the endoplasmic reticulum has profound effects on cell sensitivity to apoptosis. Signalling between calreticulin in the lumen of the endoplasmic reticulum and calcineurin in the cytoplasm may play a role in the modulation of cell sensitivity to apoptosis and the regulation of Ca2+-dependent apoptotic pathways.  相似文献   

16.
Genetically encoded Ca2+ indicators are outstanding tools for the assessment of intracellular/organelle Ca2+ dynamics. Basically, most indicators contain the Ca2+-binding site of a (mutated) cytosolic protein that interacts with its natural (mutated) interaction partner upon binding of Ca2+. Consequently, a change in the structure of the sensor occurs that, in turn, alters the fluorescent properties of the sensor. Herein, we present a new type of genetically encoded Ca2+ indicator for the endoplasmic reticulum (ER) (apoK1-er (W. F. Graier, K. Osibow, R. Malli, and G. M. Kostner, patent application number 05450006.1 at the European patent office)) that is based on a single kringle domain from apolipoprotein(a), which is flanked by yellow and cyan fluorescent protein at the 3'- and 5'-ends, respectively. Notably, apoK1-er does not interact with Ca2+ itself but serves as a substrate for calreticulin, the main constitutive Ca2+-binding protein in the ER. ApoK1-er assembles with calreticulin and the protein disulfide isomerase ERp57 and undergoes a conformational shift in a Ca2+-dependent manner that allows fluorescence resonance energy transfer between the two fluorophores. This construct primarily offers three major advantages compared with the already existing probes: (i) it resolves perfectly the physiological range of the free Ca2+ concentration in the ER, (ii) expression of apoK1-er does not affect the Ca2+ buffering capacity of the ER, and (iii) apoK1-er is not inactivated by binding of constitutive interaction partners that prevent Ca2+-dependent conformational changes. These unique characteristics of apoK1-er make this sensor particularly attractive for studies on ER Ca2+ signaling and dynamics in which alteration of Ca2+ fluctuations by expression of any additional Ca2+ buffer essentially has to be avoided.  相似文献   

17.
In the absence of cyclic nucleotides heart microsomes have two classes of calcium binding sites with binding constants of 0.69 and 0.071 micron-1 and capacities of 2.2 and 9.7 nmol/mg protein, respectively. Neither cyclic AMP nor monobutyryl cyclic AMP affect binding but cyclic GMP and monobutyryl cyclic GMP cause the complete loss of the high affinity calcium binding sites, Cyclic GMP (but not monobutyryl cyclic GMP) also causes a decrease in the binding constant of the low affinity binding sites. AMP, GMP and Tris-butyrate do not affect calcium binding. The effects of the cyclic nucleotides are direct and are not mediated by protein phosphorylation. Phosphorylation of microsomal proteins increases the binding constant but not the capacity of the high affinity calcium binding sites. The capacity and also, perhaps, binding constant of the low affinity sites is also increased by phosphorylation. In additon to their effects on calcium binding the cyclic nucleotides also affect the movements of calcium into and out of the microsomes. The effects are again direct and not mediated by protein phosphorylation. Cyclic GMP decreases the rate of Ca2+ efflux from preloaded cardiac microsomes and also appears to decrease the rate of uptake of Ca2+ by cardiac microsomes though this effect is less clear cut than the action on efflux. The cyclic nucleotide has a half maximal effect at a concentration of 100 microns. By contrast cyclic AMP increases the rate of influx of Ca2+ into heart microsomes and the rate of efflux of Ca2+ from preloaded preparations. The effect is, however, rather slight. It is suggested that the most obvious interpretation of these results is that cyclic GMP decreases the Ca2+ permeability of the cardiac microsomal membrane while cyclic AMP increases the permeability. In contrast to the results found with membrane preparations from certain other tissues phosphorylation of cardiac microsomal proteins does not appear to alter Ca2+ efflux or influx out of, or into, cardiac microsomal preparations. It is thus concluded that phosphorylation of cardiac microsomal proteins does not affect the Ca2+ permeability of the microsomal membrane.  相似文献   

18.
It is now well established that calreticulin is a high capacity Ca(2+)-binding protein which is a major Ca2+ storage protein of the lumen of endoplasmic reticulum membranes in a wide variety of tissues with the exception of skeletal and cardiac muscles. However, in nervous tissue, confusion exists regarding the nature of the intracellular Ca2+ stores, as the organelle responsible for Ca2+ storage has been identified as the endoplasmic reticulum by some investigators and as the specialized organelle, calciosome by others. Calreticulin, calsequestrin, and calsequestrin-like proteins have all been, on different occasions, reported to be present in calciosomes. Cerebral and cerebellar tissues, moreover, have been shown to contain somewhat different systems of Ca(2+)-buffering proteins. In the present paper we discuss evidence that the Ca2+ storage systems of the retina may prove to be more complex than those of other neuronal tissues. Biochemical and immunocytochemical evidence indicates the presence of either an isoform of calreticulin or another protein that is antigenically similar to calreticulin, but of slightly higher molecular weight, in the endoplasmic reticulum of both neurons and Müller glia from rabbit neural retina. However, as retinal neurons express Purkinje cell markers, one may expect to observe the presence of calsequestrin in these cells as well. Secondly, antibodies against the onchocercal RAL-1 antigen recognize a protein sharing 62-65% amino acid sequence identity with calreticulin. The anti-RAL-1 antibodies show specificity for the retina. Whether or not the RAL-1 antigen is an active part of the Ca2+ storage systems of the retina remains to be verified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Calreticulin is an abundant endo/sarcoplasmic reticulum (ER/SR) protein that may carry out multiple functions inside cells. Except for calreticulin, all of the major ER/SR Ca2+-binding proteins are substrates for protein kinase CK2 in vitro, which led us to hypothesize that native calreticulin might exist in the phosphorylated form. To investigate this possibility, we purified calreticulin from cardiac microsomes and verified its identity by immunoblot analysis and sequencing of tryptic peptides. Purified calreticulin, like cardiac calsequestrin, contained endogenous phosphate as determined by a Malachite green assay for phosphate. Previous analyses of cardiac calsequestrin have localized phosphate to a single tryptic peptide containing serine phosphate on sites phosphorylated by protein kinase CK2. Using a similar procedure, we analyzed calreticulin tryptic peptides with Malachite green, localizing phosphate binding to a single calreticulin peptide 367LKEEEEDKK. As this peptide contains no phosphorylatable residues, our results suggest that calreticulin may tightly bind phosphate or a phosphate-containing molecule at this site.  相似文献   

20.
Szperl M  Opas M 《Postepy biochemii》2005,51(4):382-386
The endoplasmic reticulum (ER) plays a vital role in many cellular processes, including Ca2+ storage and release. Calreticulin is a Ca2+-binding chaperon residing in ER. The protein is a key component of the quality control pathways in ER. In the ER lumen, calreticulin performs two major functions, works as a chaperon and regulates Ca2+ homeostasis. In cardiac muscle, calreticulin plays an important role in cardiac development and pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号