首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
棉花体细胞胚发生机理的研究进展   总被引:1,自引:0,他引:1  
棉花是一种较难通过体细胞胚发生完成植株再生的作物,而体细胞胚发生是限制棉花基因工程和细胞工程得以广泛应用的主要因素.研究者从不同角度探讨了棉花体细胞胚发生机理并取得了很大的进展,为棉花的遗传转化提供了重要的技术支持,同时成功建立了一些棉花植株再生体系.本文分别从基因型限制、胚胎学、生理生化变化、分子机理等方面阐述了近年来棉花体细胞发生机制的研究进展,并讨论了本研究领域目前存在的主要问题及相应对策.  相似文献   

2.
Guava (Psidium guajava L.), an important fruit crop of several tropical and sub-tropical countries, is facing several agronomic and horticultural problems such as susceptibility to many pathogens, particularly guava wilting caused by Fusarium oxysporium psidii, low fruit growth, short shelf life of fruits, high seed content, and stress sensitivity. Conventional breeding techniques have limited scope in improvement of guava owing to long juvenile period, self incompatibility, and heterozygous nature. Conventional propagation methods, i.e., cutting, grafting or stool layering, for improvement of guava already exist, but the long juvenile period has made them time consuming and cumbersome. Several biotechnological approaches such as genetic transformation may be effective practical solutions for such problems and improvement of guava. The improvement of fruit trees through genetic transformation requires an efficient regeneration system. During the past 2–3 decades, different approaches have been made for in vitro propagation of guava. An overview on the in vitro regeneration of guava via organogenesis, somatic embryogenesis, and synthetic seeds is presented. Organogenesis in several different genotypes through various explant selection from mature tree and seedling plants has been achieved. Factors affecting somatic embryogenesis in guava have been reviewed. Production of synthetic seeds using embryogenic propagules, i.e., somatic embryos and non-embryogenic vegetative propagules, i.e., shoot tips and nodal segments have also been achieved. Development of synthetic seed in guava may be applicable for propagation, short-term storage, and germplasm exchange, and distribution. An initial attempt for genetic transformation has also been reported. The purpose of this review is to focus upon the current information on in vitro propagation and biotechnological advances made in guava.  相似文献   

3.
人参的遗传改良*   总被引:1,自引:0,他引:1  
遗传改良是人参育种的重要手段之一,而遗传转化和再生体系的建立是开展人参遗传改良工作的前提和基础。人参植株再生可以通过器官发生和体细胞胚发生,间接体细胞胚发生是人参植株再生的主要途径,从不同外植体,不同碳源,体细胞胚优化和无激素再生等方面进行了综述。在人参遗传转化方面,发根农杆菌和根癌农杆菌对人参的遗传转化均已成功,人参皂苷合成途径中的关键酶基因和抗除草剂基因也已陆续导入人参,得到了遗传改良的转化人参。发根培养系统可用于大量生产人参皂苷,讨论了rolC基因对人参发根诱导的作用,发根植株再生能力及生物反应器培养,最后指出了人参基因工程研究中存在的问题。  相似文献   

4.
贾彩风  李悦 《植物学报》2006,23(2):186-191
探索华山松(Pinus armandii)体细胞胚胎发生技术对其实施规模化无性繁殖和开展遗传转化具有重要意义。本文以1/2LM为基本培养基, 通过激素调节等措施对华山松的胚性愈伤组织诱导和幼胚的离体培养技术进行了初步研究。研究结果: 胚性愈伤组织诱导率最高可达52.71%, 但愈伤组织继代培养后没有体细胞胚胎的分化; 首次从其子叶期的幼胚中直接诱导出具有根和茎的完整植株, 诱导率达92%以上。文章确认了采集的幼胚发育状态对胚性愈伤组织的诱导有重要影响, 并对诱导的培养条件等进行了探讨。  相似文献   

5.
华山松胚性愈伤组织诱导与幼胚离体培养   总被引:5,自引:0,他引:5  
贾彩风  李悦 《植物学通报》2006,23(2):186-191
探索华山松(Pinus armandii)体细胞胚胎发生技术对其实施规模化无性繁殖和开展遗传转化具有重要意义。本文以1/2LM为基本培养基,通过激素调节等措施对华山松的胚性愈伤组织诱导和幼胚的离体培养技术进行了初步研究。研究结果:胚性愈伤组织诱导率最高可达52.71%,但愈伤组织继代培养后没有体细胞胚胎的分化;首次从其子叶期的幼胚中直接诱导出具有根和茎的完整植株,诱导率达92%以上。文章确认了采集的幼胚发育状态对胚性愈伤组织的诱导有重要影响,并对诱导的培养条件等进行了探讨。  相似文献   

6.
Summary The development of efficient tissue culture systems for cacao holds the potential to contribute to the improvement of this tropical erop by providing a rapid and efficient vegetative propagation system for multiplication of elite genotypes. It may also find application in facilitation of germplasm movement across quarantine borders, enhancement of germplasm conservation via cryo-preservation, and development of genetic transformation systems. Somatic embryogenesis using floral tissue explants was previously the only tissue culture procedure for regeneration of cacao. We report the development of a secondary embryogenesis system utilizing primary somatic embryo cotyledon explants, which results in up to a 30-fold increase in somatic embryo production compared to primary somatic embryogenesis. The influence of genotype on the efficiency of the system was evaluated. To understand the cellular origins and developmental pathways operative in this system, we investigated the morphological changes occurring over time using light and scanning electron microscopy. While primary embryos arise from clusters of cells forming embryonic nodules, secondary embryos arise predominantly from the division of single cells, in a pathway reminiscent of zygotic embryogenesis. These results have important significance to the application of tissue culture to cacao improvement programs.  相似文献   

7.
松杉类植物体细胞胚发育机理的研究进展   总被引:3,自引:0,他引:3  
植物体细胞胚胎发生不仅可作为其繁育的重要手段,而且也是研究胚胎发育过程的一种重要模式系统.体细胞胚在形态和生理上的成熟,直接影响到植株的萌发和再生频率.本文综述了近年来国内外有关裸子植物中几种松杉类植物体细胞胚发育过程的研究报道,其中主要涉及培养基成分和脱落酸(ABA)对体细胞胚发育的影响,以及体细胞胚发育在细胞学、细胞程序性死亡、相关基因和蛋白质组学等方面的研究进展,并进一步讨论了松杉类植物体细胞胚的发育机理,以及体细胞胚在遗传转化系统中的作用.  相似文献   

8.
The expression of essential genes during somatic embryogenesis can be analysed by inducing aneuploid cells to undergo embryogenesis during immature embryo culture and then determining whether defects occur. Triticum aestivum disomic and aneuploid stocks, including 36 ditelosomics and 7 nullitetrasomic Chinese Spring wheats, were compared for their ability to undergo somatic embryogenesis after 2 months of in vitro immature embryo culture. Their regeneration capacity was observed after 4 and 14 months of in vitro culture to determine which chromosome arms influence the process. The large range of variation found among the tested aneuploids suggested that genetic control of the somatic tissue culture ability is polygenic. Our results indicate that genes affecting somatic embryo-genesis and regeneration are located in all of the homoeologous chromosome groups. The lack of chromosome arms 1AL (DT 1AS) and 3DL (DT 3DS) practically suppresses somatic embryogenesis, demonstrating that major genes on wheat chromosome arms 1AL and 3DL control regeneration capacity. Results suggest that plants were mainly produced from somatic embryo development. Although the control of somatic embryogenesis and regeneration is polygenic, the genes located on the long arms of homoeologous group 3 chromosomes have a major effect. We also have evidence of chromosome arms that determine the time required for regeneration.  相似文献   

9.
High embryogenesis capacity of soybean (Glycine max (L.) Merr.) in vitro possessed potential for effective genetic engineering and tissue culture. The objects of this study were to identify quantitative trait loci (QTL) underlying embryogenesis traits and to identify genotypes with higher somatic embryogenesis capacity. A mapping population, consisting of 126 F5:6 recombinant inbred lines, was advanced by single-seed-descent from cross between Peking (higher primary and secondary embryogenesis) and Keburi (lower primary and secondary embryogenesis). This population was evaluated for primary embryogenesis capacity from immature embryo cultures by measuring the frequency of somatic embryogenesis (FSE), the somatic embryo number per explant (EPE) and the efficiency of somatic embryogenesis (ESE). A total of 89 simple sequence repeat markers were used to construct a genetic linkage map. Six QTL were associated with somatic embryogenesis. Two QTL for FSE were found, QFSE-1 (Satt307) and QFSE-2 (Satt286), and both were located on linkage group C2 that explained 45.21 and 25.97% of the phenotypic variation, respectively. Four QTL for EPE (QEPE-1 on MLG H, QEPE-2 on MLG G and QEPE-3 on MLG G) were found, which explained 7.11, 7.56 and 6.12% of phenotypic variation, respectively. One QTL for ESE, QESE-1 (Satt427), was found on linkage group G that explained 6.99% of the phenotypic variation. QEPE-2 and QESE-1 were located in the similar region of MLG G. These QTL provide potential for marker assistant selection of genotypes with higher embryogenesis.  相似文献   

10.
Professor Komamine asked me to refine the system of carrot somatic embryogenesis in 1972. That was a very hard task, but after refining the system, we have understood the process of somatic embryogenesis clearly. The refined system has been used in physiological, biochemical and molecular biological studies of embryogenesis. Culture and embryo induction of carrot cells are easy, but the outcrossing nature of carrots hinders development of genetic and molecular biological analyses of embryogenesis. Rapid development of DNA technologies like next generation sequencing and transformation technique of carrot cells will open the way to clarify the mechanism of carrot somatic and zygotic embryogenesis.  相似文献   

11.
葫芦科植物包括多种瓜类蔬菜,对其进行离体培养研究具有重要的理论和实践意义。综述了国内在葫芦科植物器官培养、体细胞胚胎发生、花药培养、原生质体培养和体细胞杂交及离体遗传转化等方面取得的研究进展,并对葫芦科植物离体培养、遗传转化与育种的前景作了展望。  相似文献   

12.
Summary Somatic embryogenesis from different genotypes of Asparagus officinalis L. could be obtained by in vitro culture of shoot apices. Apices were first cultured on an auxin-rich inducing medium and then transferred onto a hormone-free development medium. All genotypes tested in this way produced a few somatic embryos. In some experiments, during the development phase, a new kind of friable highly embryogenic tissue appeared in a random manner. These tissues could be continuously subcultured on a hormone-free medium and were named embryogenic lines. Five of these embryogenic lines regenerated plants from somatic embryos. These regenerated plants exhibited an increased embryogenic response compared to the parent plants; e.g. apex culture produced somatic embryos without any auxin treatments. For one of the embryogenic lines, a genetic analysis showed that the improved embryogenic response of regenerated plants was controlled by a mendelian dominant monogenic mutation.Abbreviations LSEA low somatic embryogenesis ability - HSEA high somatic embryogenesis ability - NAA 1-naphthaleneacetic acid  相似文献   

13.
14.
Cellular totipotency is one of the basic principles of plant biotechnology. Currently, the success of the procedure used to produce transgenic plants is directly proportional to the successful insertion of foreign DNA into the genome of suitable target tissue/cells that are able to regenerate plants. The mature embryo (ME) is increasingly recognized as a valuable explant for developing regenerable cell lines in wheat biotechnology. We have previously developed a regeneration procedure based on fragmented ME in vitro culture. Before we can use this regeneration system as a model for molecular studies of the morphogenic pathway induced in vitro and investigate the functional links between regenerative capacity and transformation receptiveness, some questions need to be answered. Plant regeneration from cultured tissues is genetically controlled. Factors such as age/degree of differentiation and physiological conditions affect the response of explants to culture conditions. Plant regeneration in culture can be achieved through embryogenesis or organogenesis. In this paper, the suitability of ME tissues for tissue culture and the chronological series of morphological data observed at the macroscopic level are documented. Genetic variability at each step of the regeneration process was evaluated through a varietal comparison of several elite wheat cultivars. A detailed histological analysis of the chronological sequence of morphological events during ontogeny was conducted. Compared with cultures of immature zygotic embryos, we found that the embryogenic pathway occurs slightly earlier and is of a different origin in our model. Cytological, physiological, and some biochemical aspects of somatic embryo formation in wheat ME culture are discussed.  相似文献   

15.
Theoretically, complete rejuvenation of mature trees should occur through somatic embryogenesis, however, this has not been extensively studied. The main objective of the present study was to increase the efficiency of in vitro clonal propagation for mature Quercus robur (100–300 years old), by induction of somatic embryogenesis as rejuvenation step prior to establishment of shoot culture through micropropagation of somatic embryo-derived plantlets. Shoot culture lines of “mature” origin were established from epicormic shoots of two centenarian oak genotypes (Sainza and CR-0) and maintained by axillary shoot proliferation. Embryogenic lines were also initiated from epicormic leaf explants of the same genotypes and maintained by secondary somatic embryogenesis. Although the frequency of somatic embryo conversion into plantlets was low in pedunculate oak, shoot culture lines could be established and maintained by axillary branching from several germinated somatic embryos. For each genotype and shoot culture line of the two origins (mature tree and somatic plantlets), shoot multiplication rate and elongation as well as rooting ability parameters were compared. Compared with “mature-origin” shoot cultures and after more than one year propagation in vitro, shoot lines established from somatic plantlets produced a significantly higher proportion of elongated, rootable shoots (from 26.0–31.6 to 36.8–40.5%) with increased rooting ability (from 3.3–45.6% to 23.2–89.8%). In the case of 300-year-old Sainza genotype such a high organogenic capacity was similar to shoot cultures initiated from basal sprouts. Basal sprouts are considered as “mature” material that retains juvenile characteristics compared with epicormic shoots forced from crown branches. Somatic embryogenesis only slightly improved plant regeneration of shoot cultures from basal sprouts, thus validating their use as “juvenile control”. The present results provide evidence that some rejuvenation occurred during the process of somatic embryogenesis and resulted in improved shoot growth and rooting of somatic embryo-derived culture compared with “mature” shoot culture. The results reported in this study might be useful in embryogenic systems with low plant conversion rates. The proposed experimental model might also be useful in finding molecular markers of plant ontogeny.  相似文献   

16.
Efficient regeneration via somatic embryogenesis (SE) would be a valuable system for the micropropagation and genetic transformation of sugar beet. This study evaluated the effects of basic culture media (MS and PGo), plant growth regulators, sugars and the starting plant material on somatic embryogenesis in nine sugar beet breeding lines. Somatic embryos were induced from seedlings of several genotypes via an intervening callus phase on PGo medium containing N6-benzylaminopurine (BAP). Calli were mainly induced from cotyledons. Maltose was more effective for the induction of somatic embryogenesis than was sucrose. There were significant differences between genotypes. HB 526 and SDM 3, which produced embryogenic calli at frequencies of 25–50%, performed better than SDM 2, 8, 9 and 11. The embryogenic calli and embryos produced by this method were multiplied by repeated subculture. Histological analysis of embryogenic callus cultures indicated that somatic embryos were derived from single- or a small number of cells. 2,4-dichlorophenoxyacetic acid (2,4-D) was ineffective for the induction of somatic embryogenesis from seedlings but induced direct somatic embryogenesis from immature zygotic embryos (IEs). Somatic embryos were mainly initiated from hypocotyls derived from the cultured IEs in line HB 526. Rapid and efficient regeneration of plants via somatic embryogenesis may provide a system for studying the molecular mechanism of SE and a route for the genetic transformation of sugar beet.  相似文献   

17.
The ability of plant somatic cells to dedifferentiate, form somatic embryos and regenerate whole plants in vitro has been harnessed for both clonal propagation and as a key component of plant genetic engineering systems. Embryogenic culture response is significantly limited, however, by plant genotype in most species. This impedes advancements in both plant transformation-based functional genomics research and crop improvement efforts. We utilized natural variation among maize inbred lines to genetically map somatic embryo generation potential in tissue culture and identify candidate genes underlying totipotency. Using a series of maize lines derived from crosses involving the culturable parent A188 and the non-responsive parent B73, we identified a region on chromosome 3 associated with embryogenic culture response and focused on three candidate genes within the region based on genetic position and expression pattern. Two candidate genes showed no effect when ectopically expressed in B73, but the gene Wox2a was found to induce somatic embryogenesis and embryogenic callus proliferation. Transgenic B73 cells with strong constitutive expression of the B73 and A188 coding sequences of Wox2a were found to produce somatic embryos at similar frequencies, demonstrating that sufficient expression of either allele could rescue the embryogenic culture phenotype. Transgenic B73 plants were regenerated from the somatic embryos without chemical selection and no pleiotropic effects were observed in the Wox2a overexpression lines in the regenerated T0 plants or in the two independent events which produced T1 progeny. In addition to linking natural variation in tissue culture response to Wox2a, our data support the utility of Wox2a in enabling transformation of recalcitrant genotypes.  相似文献   

18.
Genotypic instability is commonly observed in plants derived from tissue culture and is at least partly due to in vitro-induced stress. In this work, the issues of whether genetic instability induced by in vitro stress varies among families and if genetic instability influences the adaptation to in vitro conditions and embryo development have been addressed. By comparing the stability of four variable nuclear microsatellite loci in embryogenic cultures and zygotic embryos of Pinus sylvestris, a significant difference in genetic stability among families was found. In six out of 10 families analysed, the level of genetic stability was similar between somatic and zygotic embryos. However, for the rest of the families, the mutation rate was significantly higher during somatic embryogenesis. Families showing a low genetic stability during establishment of embryogenic cultures had a higher embryogenic potential than those which were genetically more stable. In contrast, embryo development was suppressed in genetically unstable families. The relatively high mutation rates found for some families might reflect the plasticity of the families to adapt to stress, which is important for widely distributed species such as Pinus sylvestris.  相似文献   

19.
我国葫芦科植物离体培养研究进展   总被引:5,自引:0,他引:5  
葫芦科植物包括多种瓜类蔬菜,对其进行离体培养研究具有重要的理论和实践意义.综述了国内在葫芦科植物器官培养、体细胞胚胎发生、花药培养、原生质体培养和体细胞杂交及离体遗传转化等方面取得的研究进展,并对葫芦科植物离体培养、遗传转化与育种的前景作了展望.  相似文献   

20.
The review is dedicated to several aspects of sugar beet (Beta vulgaris L.) biotechnology: in vitro cultivation, callus induction, plant regeneration and genetic transformation. Media composition, methods of plant regeneration via somatic embryogenesis and protoplast culture are analysed. The use of Agrobacterium tumefaciens and gold particle bombardment is the base for modern genetic transformation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号