首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pack ice around Svalbard was sampled during the expedition ARK XIX/1 of RV “Polarstern” (March–April 2003) in order to determine environmental conditions, species composition and abundances of sea-ice algae and heterotrophic protists during late winter. As compared to other seasons, species diversity of algae (total 40 taxa) was not low, but abundances (5,000–448,000 cells l−1) were lower by one to two orders of magnitude. Layers of high algal abundances were observed both at the bottom and in the ice interior. Inorganic nutrient concentrations (NO2, NO3, PO4, Si(OH)4) within the ice were mostly higher than during other seasons, and enriched compared to seawater by enrichment indices of 1.6–24.6 (corrected for losses through the desalination process). Thus, the survival of algae in Arctic pack ice was not limited by nutrients at the beginning of the productive season. Based on less-detailed physical data, light was considered as the most probable factor controlling the onset of the spring ice-algal bloom in the lower part of the ice, while low temperatures and salinities inhibit algal growth in the upper part of the ice at the end of the winter. Incorporation of ice algae probably took place during the entire freezing period. Possible overwintering strategies during the dark period, such as facultative heterotrophy, energy reserves, and resting spores are discussed.  相似文献   

2.
Microscale photographs were taken of the ice bottom to examine linkages of algal chlorophyll a (chl a) biomass distribution with bottom ice features in thick Arctic first-year sea ice during a spring field program which took place from May 5 to 21, 2003. The photographic technique developed in this paper has resulted in the first in situ observations of microscale variability in bottom ice algae distribution in Arctic first-year sea ice in relation to ice morphology. Observations of brine channel diameter (1.65–2.68 mm) and number density (5.33–10.35 per 100 cm2) showed that the number of these channels at the bottom of thick first-year sea ice may be greater than previously measured on extracted ice samples. A variogram analysis showed that over areas of low chl a biomass (≤20.7 mg chl a m−2), patchiness in bottom ice chl a biomass was at the scale of brine layer spacing and small brine channels (∼1–3 mm). Over areas of high chl a biomass (≥34.6 mg chl a m−2), patchiness in biomass was related to the spacing of larger brine channels on the ice bottom (∼10–26 mm). Brine layers and channels are thought to provide microscale maxima of light, nutrient replenishment and space availability which would explain the small scale patchiness over areas of low algal biomass. However, ice melt and erosion near brine channels may play a more important role in areas with high algal biomass and low snow cover.  相似文献   

3.
The aim of the study was to investigate the capacity of microalgae from the extremely low light habitat of bottom ice to acclimate to different light conditions. During austral spring 1997 the bottom layer of land-fast ice in Terra Nova Bay displayed high values of microalgal biomass up to 2,400 μg Chla L−1 concentrated in a few centimetres ice layer. The algal assemblage was dominated by benthic pennate diatoms. Photoacclimation of the microalgae was addressed in terms of pigment spectra and photosynthetic parameters. Immediate and long term (minutes to days) changes in the photoprotective pigments (DD-cycle) were analysed. Severe photodamage occurred in microalgal assemblages exposed to high light. However, part of the bottom ice algal community showed a notable ability to acclimate to high irradiance levels. Changes in photosynthetic parameters preceded the sudden abrupt changes in pigment synthesis and the rapid increase in biomass and growth rates. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

4.
A. McMinn  A. Martin  K. Ryan 《Polar Biology》2010,33(11):1547-1556
The phytoplankton and sea ice algal communities at the end of winter in McMurdo Sound were dominated by Fragilariopsis sublineata, with Thalassiosira antarctica, Melosira adele, Pinnularia quadreata, Entomoneis kjellmannii and heterotrophic dinoflagellates also present. Sea ice algal biomass at the end of winter was very low, only 0.050 ± 0.019 mg chla m−2 in 2007 and 0.234 ± 0.036 mg chla m−2 in 2008, but this increased to 0.377 ± 0.078 mg chla m−2 by early October in 2007 and to 1.07 ± 0.192 by late September in 2008. Under ice phytoplankton biomass remained consistently below 0.1 μg chla l−1 throughout the measuring period in both years. The photosynthetic parameters Fv/Fm, rETRmax and α document microalgal communities that are mostly healthy and well adapted to their low light under ice environment. Our results also suggest that species such as Fragilariopsis sublineata are well adapted to deal with low winter light levels but are unlikely to survive an increase in irradiance, whereas other taxa, such as Thalassiosira antarctica, will do better in a higher light environment.  相似文献   

5.
During the late winter and spring of 1994, the influence of sea ice on phytoplankton succession in the water was studied at a coastal station in the northern Baltic Sea. Ice cores were taken together with water samples from the underlying water and analysed for algal composition, chlorophyll a and nutrients. Sediment traps were placed under the ice and near the bottom, and the sedimented material was analysed for algal composition. The highest concentration of ice algae (4.1 mmol C m−2) was found shortly before ice break-up in the middle of April, coincidental with the onset of an under-ice phytoplankton bloom. The ice algae were dominated by the diatoms Chaetoceros wighamii Brightwell, Melosira arctica (Ehrenberg) Dickie and Nitzschia frigida Grunow. Under the ice the diatom Achnanthes taeniata Grunow and the dinoflagellate Peridiniella catenata (Levander) Balech were dominant. Calculations of sinking rates and residence times of the dominant ice algal species in the photic water column indicated that only one ice algal species (Chaetoceros wighamii) had a seeding effect on the water column: this diatom dominated the spring phytoplankton bloom in the water together with Achnanthes taeniata and Peridiniella catenata. Received: 9 May 1997 / Accepted: 15 February 1998  相似文献   

6.
Okhotsk Sea pack ice from Shiretoko in northern Hokkaido, sampled in March 2007, contained microalgal communities dominated by the centric diatoms Thalassiosira nordenskioeldi and T. punctigera. Domination by this genus is very unusual in sea ice. Communities from nearby fast ice at Saroma-ko lagoon were dominated by Detonula conferavea and Odontella aurita. Average microalgal biomass of the Okhotsk Sea pack ice (surface and bottom) was 1.59 ± 1.09 μg chla l−1 and for fast ice (bottom only) at nearby Saroma-ko lagoon, 16.5 ± 3.2 μg l−1 (=31.1 ± 5.0 mg chla m−2). Maximum quantum yield of the Shiretoko pack ice algal communities was 0.618 ± 0.056 with species-specific data ranging between 0.211 and 0.653. These community values are amongst the highest recorded for sea ice algae. Rapid light curves (RLC) on individual cells indicated maximum relative electron transfer rates (relETR) between 20.8 and 60.6, photosynthetic efficiency values (α) between 0.31 and 0.93 and onset of saturation values (E k) between 33 and 91 μmol photons m−2 s−1. These data imply that the pack ice algal community at Shiretoko was healthy and actively photosynthesising. Maximum quantum yield of the Saroma-ko fast ice community was 0.401 ± 0.086, with values for different species between 0.361 and 0.560. RLC data from individual Saroma-ko fast ice algal cells indicated relETR between 55.3 and 60.6, α values between 0.609 and 0.816 and E k values between 74 and 91 μmol photons m−2 s−1 which are consistent with measurements in previous years.  相似文献   

7.
During the last few years, extensive sea ice melting in the Arctic due to climate change has been detected, which could potentially modify the organic carbon fluxes in these waters. In this study, the effect of sea ice melting on bacterial carbon channelling by phages and protists has been evaluated in the northern Greenland Sea and Arctic Ocean. Grazing on bacteria by protists was evaluated using the FLB disappearance method. Lysis of bacteria due to viral infections was measured using the virus reduction approach. Losses of bacterial production caused by protists (PMMBP) dominated losses caused by viruses (VMMBP) throughout the study. Lysogenic viral production was detected in 7 out of 21 measurements and constituted from 33.9 to 100.0% of the total viral production. Significantly higher PMMBP and lower VMMBP were detected in waters affected by ice melting compared with unaffected waters. Consequently, significantly more bacterial carbon was channelled to the higher trophic levels in affected waters (13.05 ± 5.98 μgC l−1 day−1) than in unaffected waters (8.91 ± 8.33 μgC l−1 day−1). Viruses channelled 2.63 ± 2.45 μgC l−1 day−1 in affected waters and 4.27 ± 5.54 μgC l−1 day−1 in unaffected waters. We conclude that sea ice melting in the Arctic could modify the carbon flow through the microbial food web. This process may be especially important in the case of massive sea ice melting due to climate change.  相似文献   

8.
This study examined a new method of mitigating harmful algal blooms (HABs) by combining biosurfactant sophorolipid and yellow clay. To investigate the effects and practicability of this HAB mitigation method, field experiments were carried out during a Cochlodinium bloom near Miruk Island, South Korea, in August 2002. Field experiments examined the effects of sophorolipid and yellow clay on Cochlodinium bloom mitigation and on marine plankton such as bacteriaplankton, heterotrophic protists, and zooplankton. A mixture of 5 mg l−1 sophorolipid and 1 g l−1 yellow clay was sprayed directly on the sea surface and its effect was compared with that of 10 g l−1 of yellow clay applied under similar conditions. The sophorolipid–yellow clay mixture more efficiently mitigated the Cochlodinium bloom (95% removal efficiency after 30 min) than yellow clay alone (79% after 30 min). Further, no variation in bacterial abundance occurred 30 min after spraying the sophorolipid–yellow clay mixture. After 30 min, heterotrophic protist abundance at the surface decreased 21 and 41%, respectively, following the sophorolipid–yellow clay mixture and yellow clay treatments. Zooplankton decreased by 38% 15 min after spraying the mixture and 67% 30 min after spraying the yellow clay. These results indicate that the mixture of sophorolipid and yellow clay had a less adverse effect on bacteriaplankton, heterotrophic protists, and zooplankton than the yellow clay, suggesting that the sophorolipid–yellow clay mixture can mitigate HABs efficiently with fewer negative effects on the pelagic ecosystem.  相似文献   

9.
Coastal fast ice and underlying water of the northern Baltic Sea were sampled throughout the entire ice winter from January to late March in 2002 to study the succession of bacterial biomass, secondary production and community structure. Temperature gradient gel electrophoresis (TGGE) and sequencing of TGGE fragments were applied in the community structure analysis. Chlorophyll-a and composition of autotrophic and heterotrophic assemblages were also examined. Overall succession of ice organism assemblages consisted of a low-productive stage, the main algal bloom, and a heterotrophic post-bloom situation, as typical for the study area. The most important groups of organisms in ice in terms of biomass were dinoflagellates, plasticidic flagellates, rotifers and ciliates. Ice bacteria showed a specific succession not directly dependent on the overall succession events of ice organisms. Sequenced 16S rDNA fragments were mainly affiliated to α-, β-, and γ-proteobacterial phyla and Cytophaga–Flavobacterium–Bacteroides-group, and related to sequences from cold environments, also from the Baltic Sea. Temporal clustering of the TGGE fingerprints was stronger than spatial, although lower ice and underlying water communities always clustered together, pointing to the importance of ice maturity and ice–water interactions in shaping the bacterial communities.  相似文献   

10.
Physical, biogeochemical and photosynthetic parameters were measured in sea ice brine and ice core bottom samples in the north-western Weddell Sea during early spring 2006. Sea ice brines collected from sackholes were characterised by cold temperatures (range −7.4 to −3.8°C), high salinities (range 61.4–118.0), and partly elevated dissolved oxygen concentrations (range 159–413 μmol kg−1) when compared to surface seawater. Nitrate (range 0.5–76.3 μmol kg−1), dissolved inorganic phosphate (range 0.2–7.0 μmol kg−1) and silicic acid (range 74–285 μmol kg−1) concentrations in sea ice brines were depleted when compared to surface seawater. In contrast, NH4 + (range 0.3–23.0 μmol kg−1) and dissolved organic carbon (range 140–707 μmol kg−1) were enriched in the sea ice brines. Ice core bottom samples exhibited moderate temperatures and brine salinities, but high algal biomass (4.9–435.5 μg Chl a l−1 brine) and silicic acid depletion. Pulse amplitude modulated fluorometry was used for the determination of the photosynthetic parameters F v/F m, α, rETRmax and E k. The maximum quantum yield of photosystem II, F v/F m, ranged from 0.101 to 0.500 (average 0.284 ± 0.132) and 0.235 to 0.595 (average 0.368 ± 0.127) in the sea ice internal and bottom communities, respectively. The fluorometric measurements indicated medium ice algal photosynthetic activity both in the internal and bottom communities of the sea ice. An observed lack of correlation between biogeochemical and photosynthetic parameters was most likely due to temporally and spatially decoupled physical and biological processes in the sea ice brine channel system, and was also influenced by the temporal and spatial resolution of applied sampling techniques.  相似文献   

11.
Landfast ice algal communities were studied in the strongly riverine-influenced northernmost part of the Baltic Sea, the Bothnian Bay, during the winter-spring transition of 2004. The under-ice river plume, detected by its low salinity and elevated nutrient concentrations, was observed only at the station closest to the river mouth. The bottommost ice layer at this station was formed from the plume water (brine volume 0.71%). This was reflected by the low flagellate-dominated (93%) algal biomass in the bottom layer, which was one-fifth of the diatom-dominated (74%) surface-layer biomass of 88 μg C l−1. Our results indicate that habitable space plays a controlling role for ice algae in the Bothnian Bay fast ice. Similarly to the water column in the Bothnian Bay, average dissolved inorganic N:P-ratios in the ice were high, varying between 12 and 265. The integrated chlorophyll a (0.1–2.2 mg m−2) and algal biomass in the ice (1–31 mg C m−2) correlated significantly (Spearman ρ = 0.79), with the highest values being measured close to the river mouth in March and during the melt season in April. Flagellates <20 μm generally dominated in both the ice and water columns in February–March. In April the main ice-algal biomass was composed of Melosira arctica and unidentified pennate diatoms, while in the water column Achnanthes taeniata, Scrippsiella hangoei and flagellates dominated. The photosynthetic efficiency (0.003–0.013 (μg C [μg chl a −1] h−1)(μE m−2s−1)−1) and maximum capacity (0.18–1.11 μg C [μg chl a −1] h−1) could not always be linked to the algal composition, but in the case of a clear diatom dominance, pennate species showed to be more dark-adapted than centric diatoms.  相似文献   

12.
Variations in the concentrations of the sea ice diatom biomarker, IP25 (Ice Proxy with 25 carbon atoms), were measured in the bottom 10 cm of sea ice collected from the eastern Beaufort Sea and Amundsen Gulf from January to June 2008, as part of the International Polar Year–Circumpolar Flaw Lead system study. Temporal and vertical changes in IP25 concentrations were compared against other biomarkers and indicators of ice algal production. IP25 was not detected in sea ice samples collected from mid-winter to early spring, likely as a result of light-limiting conditions for algal growth and accumulation. From early March to mid-June, IP25 concentrations correlated well with those of fatty acids (r = 0.79; P < 0.001), less so with total sterols (r = 0.63; P < 0.001) and qualitatively with chlorophyll a concentrations and diatom cell abundances from adjacent sea ice cores. Approximately 90% of the total sea ice IP25 accumulation occurred from mid-March to late-May, coincident with the ice algal bloom period. The majority (ca. 87–93%) of IP25 was biosynthesised within the lower 5 cm of the sea ice where brine volume fractions were >5% which is consistent with the hypothesis that brine channel connectivity limits the internal colonisation of sea ice by diatoms. Maximum IP25 concentrations occurred at 1–3 cm from the ice–water interface providing further evidence for a selective sea ice diatom origin for this biomarker. In contrast, vertical concentration profiles for fatty acids and sterols indicated mixed sources for these biomarkers.  相似文献   

13.
R. Gradinger 《Polar Biology》1999,22(3):169-177
The abundance and biomass of sympagic meiofauna were studied during three cruises to the Antarctic and one summer expedition to the central Arctic Ocean. Ice samples were collected by ice coring and algal pigment concentrations and meiofauna abundances were determined for entire cores. Median meiofauna abundances for the expeditions ranged from 4.4 to 139.5 × 103 organisms m−2 in Antarctic sea ice and accounted for 40.6 × 103 organisms m−2 in Arctic multi-year sea ice. While most taxa (ciliates, foraminifers, turbellarians, crustaceans) were common in both Arctic and Antarctic sea ice, nematodes and rotifers occurred only in the Arctic. Based on the calculated biomass, the potential meiofauna ingestion rates were determined by applying an allometric model. For both hemispheres, daily and yearly potential ingestion rates were below the production values of the ice algal communities, pointing towards non-limited feeding conditions for ice meiofauna year-round. Accepted: 29 March 1999  相似文献   

14.
Population dynamics of bacteria in Arctic sea ice   总被引:3,自引:0,他引:3  
The dynamics of bacterial populations in annual sea ice were measured throughout the vernal bloom of ice algae near Resolute in the Canadian Arctic. The maximum concentration of bacteria was 6.0·1011 cells·m–2 (about 2.0·1010 cells·l–1) and average cell volume was 0.473 m3 in the lower 4 cm of the ice sheet. On average, 37% of the bacteria were epiphytic and were most commonly attached (70%) to the dominant alga,Nitzschia frigida (58% of total algal numbers). Bacterial population dynamics appeared exponential, and specific growth rates were higher in the early season (0.058 day–1), when algal biomass was increasing, than in the later season (0.0247 day–1), when algal biomass was declining. The proportion of epiphytes and the average number of epiphytes per alga increased significantly (P<0.05) through the course of the algal bloom. The net production of bacteria was 67.1 mgC·m–2 throughout the algal bloom period, of which 45.5 mgC·m–2 occurred during the phase of declining algal biomass. Net algal production was 1942 mgC·m–2. Sea ice bacteria (both arctic and antarctic) are more abundant than expected on the basis of relationships between bacterioplankton and chlorophyll concentrations in temperate waters, but ice bacteria biomass and net production are nonetheless small compared with the ice algal blooms that presumably support them.  相似文献   

15.
In January 2004 the microplankton community from the coastal waters of Terre Adélie and Georges V Land (139°E–145°E) was studied. Results showed a diatom-dominated bloom with chlorophyll a levels averaging 0.64 μg l−1 at 5 m depth (range 0.21–1.57 μg l−1). Three geographic assemblages of diatoms were identified, based on principal diatom taxa abundances. The stratified waters near the Mertz Glacier presented highest phytoplankton biomasses (0.28–1.57 μg Chl a l−1 at 5 m) and diatom abundances (6,507–70,274 cells l−1 at 5 m), but low diversity, dominated by Fragilariopsis spp. Lower biomasses (0.38–0.94 μg Chl a l−1 at 5 m) and abundances (394–9,058 cells l−1 at 5 m) were observed in the mixed waters around the Astrolabe Glacier with a diverse diatom community characterised by larger species Corethron pennatum and Rhizosolenia spp. Finally an intermediate zone between them over the shallower shelf waters of the Adélie Bank represented by Chaetoceros criophilus, where biomasses (0.21–0.35 μg Chl a l−1 at 5 m) and abundances (1,190–5,431 cells l−1 at 5 m) were lowest, coinciding with the presence of abundant herbivorous zooplankton.  相似文献   

16.
Concentrations of plankton, suspended particles 0.74–87 μm equivalent spherical diameter and dissolved organic carbon (DOC) were measured from May to February at an Antarctic coastal site. Bacteria-sized particles 0.74–1 μm diameter, and bacterial cells and heterotrophic protists all exhibited a seasonal minimum during winter and maxima in summer. Bacteria composed <10% of the bacteria-sized particles. Release of autotrophic protists from the ice caused water column biomass of autotrophs to reach maximum concentrations in October and November, but maximum cell concentration in the water column was reached in January. Microheterotroph biomass weakly reflected the release of the ice algal community but reached maximum concentration during the water column bloom in January. Total DOC concentrations varied from 0.36 mg C l−1 in July to 3.10 mg C l−1 in October, with a yearly average of 1.51 mg C l−1. Ultrafiltration of DOC revealed that the molecular weight composition of the DOC differed greatly through the year. DOC <5 kDa molecular weight reached a maximum of 1.25 mg C l−1 in October and accounted for up to 60% of total DOC in July. Concentrations of high molecular weight DOC (>100 kDa) were highest in July and November, with the DOC (100 kDa–0.5 μm) fraction reaching a maximum of 1.22 mg C l−1 in November and composing 82% of the total DOC in January. Wet chemical oxidation and high-temperature catalytic oxidation organic carbon analyses were compared. Good correlation was observed between methods during summer but no significant correlation existed in winter, indicating that winter DOC may be refractory. Accepted: 21 March 2000  相似文献   

17.
The algal, protozoan and metazoan communities within different drift-ice types (newly formed, pancake and rafted ice) and in under-ice water were studied in the Gulf of Bothnia in March 2006. In ice, diatoms together with unidentified flagellates dominated the algal biomass (226 ± 154 μg ww l−1) and rotifers the metazoan and protozoan biomass (32 ± 25 μg ww l−1). The under-ice water communities were dominated by flagellates and ciliates, which resulted in lower biomasses (97 ± 25 and 21 ± 14 μg ww l−1, respectively). The under-ice water and newly formed ice separated from all other samples to their own cluster in hierarchical cluster analysis. The most important discriminating factors, according to discriminant analysis, were chlorophyll-a, phosphate and silicate. The under-ice water/newly formed ice cluster was characterized by high nutrient and low chlorophyll-a values, while the opposite held true for the ice cluster. Increasing trends in chlorophyll-a concentration and biomass were observed with increasing ice thickness. Within the thick ice columns (>40 cm), the highest chlorophyll-a concentrations (6.6–22.2 μg l−1) were in the bottom layers indicating photoacclimation of the sympagic community. The ice algal biomass showed additional peaks in the centric diatom-dominated surface layers coinciding with the highest photosynthetic efficiencies [0.019–0.032 μg C (μg Chl-a −1 h−1) (μE m−2 s−1)−1] and maximum photosynthetic capacities [0.43-1.29 μg C (μg Chl-a −1 h−1)]. Rafting and snow-ice formation, determined from thin sections and stable oxygen isotopic composition, strongly influenced the physical, chemical and biological properties of the ice. Snow-ice formation provided the surface layers with nutrients and possibly habitable space, which seemed to have favored centric diatoms in our study.  相似文献   

18.
Pack ice, brines and seawaters were sampled in October 2003 in the East Antarctic sector to investigate the structure of the microbial communities (algae, bacteria and protozoa) in relation to the associated physico-chemical conditions (ice structure, temperature, salinity, inorganic nutrients, chlorophyll a and organic matter). Ice cover ranged between 0.3 and 0.8 m, composed of granular and columnar ice. The brine volume fractions sharply increased above −4°C in the bottom ice, coinciding with an important increase of algal biomass (up to 3.9 mg C l−1), suggesting a control of the algae growth by the space availability at that period of time. Large accumulation of NH4 + and PO4 3− was observed in the bottom ice. The high pool of organic matter, especially of transparent exopolymeric particles, likely led to nutrients retention and limitation of the protozoa grazing pressure, inducing therefore an algal accumulation. In contrast, the heterotrophs dominated in the underlying seawaters.  相似文献   

19.
Abstract Bacterial abundance and bacterivorous protist abundance and activity were examined in ice-brine and water column communities of a cold temperate Japanese lagoon (Saroma-Ko Lagoon, Hokkaido, 44°N, 144°E), during the late winter phase of ice community development (February–March 1992). Bacterial abundance averaged 6 and 1 × 105 cells ml−1 in the ice-brine and plankton samples, respectively, and generally decreased during the sampling period. Bacterivorous protists, identified based on direct observation of short-term (<1 h) ingested fluorescently labeled bacteria (FLB) in their food vacuoles, were largely dominated by flagellates, mainly cryothecomonad-type and chrysomonad-like cells and small dinoflagellates of the genus Gymnodinium. Bacterivorous ciliates included mainly the prostomatid Urotricha sp., the scuticociliates Uronema and Cyclidium, the choreotrichs Lohmaniella oviformis and Strobilidium, and the hypotrich Euplotes sp. Protist abundance averaged 4 × 103 and 8.1 cells ml−1 in the ice-brine and 0.3 × 103 and 1.2 cells ml−1 in the plankton, for flagellates and ciliates, respectively. In contrast to bacteria, the abundance of protists generally increased throughout the sampling period, indicating predator–prey interactions. Protistan bacterivory, measured from the rate of FLB disappearance over 24 h, averaged 36% (ice) and 24% (plankton) of bacterial standing stock and exhibited the same seasonal pattern as for protist abundance. The calculated specific clearance (range, 2–67 nl protozoa−1 h−1) and ingestion (<1–26 particles protozoa−1 h−1) rates were likely to be minimal estimates and grazing impact may have been higher on occasion. Indications for the dependence of ``bacterivorous protists' on nonbacterial food items were also provided. Although alternative sources of bacterial loss are likely to be of importance, this study provides evidence for the potential of protozoan assemblages as bacterial grazers in both sea ice-brine biota and water column at the southern limit of sea ice in the northern hemisphere. Received: 30 July 1998; Accepted: 18 November 1998  相似文献   

20.
Bacterial carbon demand, an important component of ecosystem dynamics in polar waters and sea ice, is a function of both bacterial production (BP) and respiration (BR). BP has been found to be generally higher in sea ice than underlying waters, but rates of BR and bacterial growth efficiency (BGE) are poorly characterized in sea ice. Using melted ice core incubations, community respiration (CR), BP, and bacterial abundance (BA) were studied in sea ice and at the ice–water interface (IWI) in the Western Canadian Arctic during the spring and summer 2008. CR was converted to BR empirically. BP increased over the season and was on average 22 times higher in sea ice as compared with the IWI. Rates in ice samples were highly variable ranging from 0.2 to 18.3 μg C l−1 d−1. BR was also higher in ice and on average ~10 times higher than BP but was less variable ranging from 2.39 to 22.5 μg C l−1 d−1. Given the high variability in BP and the relatively more stable rates of BR, BP was the main driver of estimated BGE (r = 0.97, < 0.0001). We conclude that microbial respiration can consume a significant proportion of primary production in sea ice and may play an important role in biogenic CO2 fluxes between the sea ice and atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号