首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genetic mapping in the region of the mouse X-inactivation center   总被引:3,自引:0,他引:3  
The mouse X-inactivation center lies just distal to the T16H breakpoint. Utilizing pedigree analysis of backcross progeny from a Mus domesticus/Mus spretus interspecific cross, we have mapped a number of genetic loci, gene probes, microclones, and EagI linking clones distal to the T16H breakpoint. The genetic analysis provides a detailed genetic map in the vicinity of the mouse X-inactivation center. Comparative mapping data from the human X chromosome indicate that the most probable location of the mouse X-inactivation center is distal to Ccg-1 and in the region of the Pgk-1 locus. We report the assignment of two new loci, EM13 and DXSmh44, to the Ccg-1/Pgk-1 interval.  相似文献   

3.
4.
A total of 17 linking clones previously sublocalized to the central span of the mouse X chromosome have been ordered by detailed analysis through interspecific Mus spretus/Mus musculus domesticus backcross progeny. These probes have been positioned with respect to existing DNA markers utilizing a new interspecific backcross segregating for the Tabby (Ta) locus. The density of clones within this 11.5-cM interval is now, on average, one clone every 1000 kb. This high-density map provides probes in the vicinity of a number of important genetic loci in this region which include the X-inactivation center, the Ta locus, and the mottled (Mo) locus, and therefore provides a molecular framework for identification of the genes encoded at these loci.  相似文献   

5.
Single copy probes derived from CpG-rich island clones fromEag I andNot I linking libraries and nine rare-cutter restriction endonucleases were used to investigate the methylation status of CpG-rich islands on the inactive and active X chromosomes (Chr) of the mouse. Thirteen of the 14 probes used detected CpG-rich islands in genomic DNA. The majority of island CpGs detected by rare-cutter restriction endonucleases were methylated on the inactive X Chr and unmethylated on the active X Chr, but some heterogeneity within the cell population used to make genomic DNA was detected. The CpG-rich islands detected by two putative pseudoautosomal probes remained unmethylated on both the active and inactive X Chrs. Otherwise, distance from the X Chr inactivation center did not affect the methylation profile of CpG-rich islands. We conclude that methylation of CpG-rich islands is a general feature of X Chr inactivation.  相似文献   

6.
In mammals, the silencing step of the X-chromosome inactivation (XCI) process is initiated by the non-coding Xist RNA. Xist is known to be controlled by the non-coding Xite and Tsix loci, but the mechanisms by which Tsix and Xite regulate Xist are yet to be fully elucidated. Here, we examine the role of higher order chromatin structure across the 100-kb region of the mouse X-inactivation center (Xic) and map domains of specialized chromatin in vivo. By hypersensitive site mapping and chromosome conformation capture (3C), we identify two domains of higher order chromatin structure. Xite makes looping interactions with Tsix, while Xist makes contacts with Jpx/Enox, another non-coding gene not previously implicated in XCI. These regions interact in a developmentally-specific and sex-specific manner that is consistent with a regulatory role in XCI. We propose that dynamic changes in three-dimensional architecture leads to formation of separate chromatin hubs in Tsix and Xist that together regulate the initiation of X-chromosome inactivation.  相似文献   

7.
8.
9.
The gene for the neural cell adhesion molecule L1 (L1CAM) has been shown to be located close to the color vision pigment genes in mouse and man. This location has been confirmed by a number of different mapping strategies in both species. With pulsed field gel electrophoresis it has been proposed that L1CAM lies between the RCP, GCP, and GDX, G6PD loci. We report here a reinterpretation of the location of this gene, based on the physical linkage of L1CAM to the more proximal locus DXS15. This places L1CAM between this marker and the color vision genes (RCP, GCP), a region very dense in CpG islands, expected to contain a large fraction of the disease genes assigned to the Xq28 region. In combination with the physical mapping data on Xq28 described previously, this closes the last remaining gap in the map of the Xq27–Xq28 region. This removes the last contradiction between the maps of this region in the genomes of man and mouse, and confirms the close similarity of order and distances of markers between these organisms. Offprint requests to: C.M. Disteche  相似文献   

10.
Mouse X chromosome inactivation center contains the DXPas34 minisatellite locus which plays an important role in expression regulation of the Tsix and Xist genes, involved into female dosage compensation. Comparative analysis of the DXPas34 locus from mouse, rat, and four common vole species revealed similar organization of this region in the form of tandem repeat blocks. A search for functionally important elements in this locus showed that all the species examined carried the conservative motif monomers, which could be involved in regulation of X inactivation.  相似文献   

11.
The X-linked hypohidrotic ectodermal dysplasia (EDA) locus has been previously localized to the subchromosomal region Xq11-q21.1. We have extended our previous linkage studies and analyzed linkage between the EDA locus and 10 marker loci, including five new loci, in 41 families. Four of the marker loci showed no recombination with the EDA locus, and six other loci were also linked to the EDA locus with recombination fractions of .009-.075. Multipoint analyses gave support to the placement of the PGK1P1 locus proximal to the EDA locus and the DXS453 and PGK1 loci distal to EDA. Further ordering of the loci could be inferred from a human/rodent somatic cell hybrid derived from an affected female with EDA and an X;9 translocation and from studies of an affected male with EDA and a submicroscopic deletion. Three of the proximal marker loci, which showed no recombination with the EDA locus, when used in combination, were informative in 92% of females. The closely linked flanking polymorphic loci DXS339 and DXS453 had heterozygosities of 72% and 76%, respectively, and when used jointly, they were doubly informative in 52% of females. The human DXS732 locus was defined by a conserved mouse probe pcos169E/4 (DXCrc169 locus) that cosegregates with the mouse tabby (Ta) locus, a potential homologue to the EDA locus. The absence of recombination between EDA and the DXS732 locus lends support to the hypothesis that the DXCrc169 locus in the mouse and the DXS732 locus in humans may contain candidate sequences for the Ta and EDA genes, respectively.  相似文献   

12.
The X Chromosome (Chr) controlling element locus (Xce) in the mouse has been shown to influence the X inactivation process. Xce maps to the central region of the X Chr, which also contains the Xist sequence, itself possibly implicated in the X inactivation process. Three microsatellite markers spanning the Xist locus have been isolated from an Xist containing YAC. All three microsatellite markers showed complete linkage with Xce in recombinants for the central span of the mouse X Chr between Ta and Mo blo and strong linkage disequilibrium with Xce in all but one of the inbred mouse strains tested. In the standard Xce b typing strain JU/Ct, the two microsatellites most closely flanking Xist fail to carry the allelic forms expected if Xist and Xce are synonymous. Alternative explanations for this finding are presented in the context of our search for understanding the relation between Xist and Xce.  相似文献   

13.
The q23-q33 region of human chromosome 5 encodes a large number of growth factors, growth factor receptors, and hormone/neurotransmitter receptors. This is also the general region into which several disease genes have been mapped, including diastrophic dysplasia, Treacher Collins syndrome, hereditary startle disease, the myeloid disorders that are associated with the 5q-syndrome, autosomal-dominant forms of hereditary deafness, and limb girdle muscular dystrophy. We have developed a framework physical map of this region using cosmid clones isolated from the Los Alamos arrayed chromosome 5-specific library. Entry points into this library included 14 probes to genes within this interval and one anonymous polymorphic marker locus. A physical map has been constructed using fluorescence in situ hybridization of these cosmids on metaphase and interphase chromosomes, and this is in good agreement with the radiation hybrid map of the region. The derived order of loci across the region is cen-IL4-IL5-IRF1-IL3-IL9-EGR1-CD14-FGFA-GRL-D5S207-ADRB2-SPARC-RPS14-CSF1R-ADRA1, and the total distance spanned by these loci is approximately 15 Mb. The framework map, genomic clones, and contig expansion within 5q23-q33 should provide valuable resources for the eventual isolation of the clinically relevant loci that reside in this region.  相似文献   

14.
The Xist sequence has several characteristics that make it a potential candidate for the X-inactivation center. To investigate the role of Xist and adjacent sequences lying within the X-inactivation center candidate region, a 460-kb region surrounding the murine Xist sequence has been arrayed in lambda contigs with a combination of IRS-PCR-based hybridization and YAC fragmentation. The orientation of the Xist sequence in relation to the telomere and centromere of the X Chromosome (Chr) has been established with this contig and shown to be inverted compared to that in human.  相似文献   

15.
Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs–miR-374-5p and miR-421-3p–mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development.  相似文献   

16.
17.
Comparison of the physical and recombination maps of the mouse X chromosome   总被引:2,自引:0,他引:2  
The locations of five random mouse genomic DNA markers and five cloned genes, including the genes for clotting factors VIII and IX (Cf-8 and Cf-9), Duchenne muscular dystrophy (Dmd), phosphoglycerate kinase-1 (Pgk-1), and alpha-galactosidase (Ags), on the mouse X chromosome were determined by in situ hybridization. The five random DNA markers provide new genetic loci with useful restriction fragment length polymorphisms between mouse strains and species, including one locus close to the centromeric region of the mouse X chromosome. The physical map and the recombination map of these loci on the X chromosome were compared. There was good agreement in the order of loci. Relative distances between loci were consistent along the X chromosome, with the exception of the telomeric end of the long arm, where the recombination fraction observed between loci closely associated on the physical map was higher than that between similarly spaced markers located in the proximal region of the X chromosome. These results are discussed in comparison to the human X-chromosome map.  相似文献   

18.
McLeod syndrome, characterized by acanthocytosis and the absence of a red-blood-cell Kell antigen (Kx), is a multisystem disorder involving a late-onset myopathy, splenomegaly, and neurological defects. The locus for this syndrome has been mapped, by deletion analysis, to a region between the loci for Duchenne muscular dystrophy (DMD) and chronic granulomatous disease (CGD). In this study, we describe a new marker, 3BH/R 0.3 (DXS 709), isolated by cloning the deletion breakpoint of a DMD patient. A long-range restriction map of Xp21, encompassing the gene loci for McLeod and CGD, was constructed, and multiple CpG islands were found clustered in a 700-kb region. Using the new marker, we have limited the McLeod syndrome critical region to 150-380-kb. Within this interval, two CpG-rich islands which may represent candidate sites for the McLeod gene were identified.  相似文献   

19.
We have generated a high-resolution genetic map, 0.071 cM per backcross animal, of the 13 cM T–H2 region of the mouse Chromosome (Chr) 17. The map contains two phenotypic loci, T and Hst1, 12 RFLP markers, and 24 microsatellite loci. The Hst1 gene was mapped to a chromosomal interval contained within a single 580-kb YAC clone. The FFEH11 YAC is 0.44 cM long and carries, besides the Hst1 gene, five polymorphic DNA markers and recombination breakpoints of six backcross animals. Two candidate genes for Hst1 were identified based on their location and testicular expression. These are Tbp and D17Ph4e. The sub-milliMorgan map of the T–H2 region revealed significant clustering of (CA)n loci. The clustering, if shown to be a common feature in the mouse genome, may cause gaps in the physical map of the mouse genome. Received: 11 September 1995 / Accepted: 9 October 1995  相似文献   

20.
The rd3 retinal degeneration gene was previously mapped 10 ± 2.5 cM distal to Akp1 on mouse Chromosome (Chr) 1 (Chang et al., 1993), a region that may be homologous to the locus of the human USH2A gene, which carries mutations responsible for Usher IIa retinal degeneration/hearing loss syndrome. An intercross from an Rb(11,13)4Bnr(rd3/rd3) × C57BL/6J mating was set up, 428 F2 meioses were analyzed, and the rd3 gene was placed between the markers D1MIT292/D1MIT209 and D1MIT510, a distance of 1.40 ± 0.57 cM. These flanking markers and the mouse ortholog of USH2A (Mush2a) were mapped in the T31 mouse radiation hybrid (RH) panel, with the result that D1MIT292/D1MIT209 and D1MIT510 were 7.9 cR3000 apart (∼800 kb), and Mush2a was > 30 cR3000 proximal to the pair, excluding it from the rd3 locus. A contig spanning the rd3 locus and consisting of 2 YACs and one BAC was generated, and Mush2a was absent from it, confirming its exclusion from the locus. Comparison of adjacent marker pairs in the Whitehead genetic map and our genetic map showed some discrepancies in order of markers and genetic distances. Comparison of our genetic map and the RH map showed some highly skewed relationships between genetic and physical distances. Received: 4 January 1999 / Accepted: 26 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号