首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear genomes of eukaryotes are bombarded by a continuous deluge of organellar DNA which contributes significantly to eukaryote evolution. Here, we present a new PCR-based method that allows the specific amplification of nuclear integrants of organellar DNA (norgs) by exploiting recent deletions present in organellar genome sequences. We have used this method to amplify nuclear integrants of plastid DNA (nupts) from the nuclear genomes of several nicotiana species and to study the evolutionary forces acting upon these sequences. The role of nupts in endosymbiotic evolution and the different genetic factors influencing the time available for a chloroplastic gene to be functionally relocated in the nucleus are discussed.  相似文献   

2.
Because organellar genomes are often uniparentally inherited, chloroplast (cp) and mitochondrial (mt) DNA polymorphisms have become the markers of choice for investigating evolutionary issues such as sex-biased dispersal and the directionality of introgression. To the extent that organellar inheritance is strictly maternal, it has also been suggested that the insertion of transgenes into either the chloroplast or mitochondrial genomes would reduce the likelihood of gene escape via pollen flow from crop fields into wild plant populations. In this paper we describe the adaptation of chloroplast simple sequence repeats (cpSSRs) for use in the Compositae. This work resulted in the identification of 12 loci that are variable across the family, seven of which were further shown to be highly polymorphic within sunflower (Helianthus annuus). We then used these markers, along with a novel mtDNA restriction fragment length polymorphism (RFLP), to investigate the mode of organellar inheritance in a series of experimental crosses designed to mimic the initial stages of crop-wild hybridization in sunflower. Although we cannot rule out the possibility of extremely rare paternal transmission, our results provide the best evidence to date of strict maternal organellar inheritance in sunflower, suggesting that organellar gene containment may be a viable strategy in sunflower. Moreover, the portability of these markers suggests that they will provide a ready source of cpDNA polymorphisms for use in evolutionary studies across the Compositae.  相似文献   

3.
Sato-Nara K  Fukuda H 《Planta》2000,211(4):457-466
 The synthesis of DNA in nuclei and organellar nucleoids at the various stages of somatic embryogenesis in carrot (Daucus carota L. cv. Kurodagosun) was analyzed using anti-5-bromo-2′-deoxyuridine (BrdU) immunofluorescence microscopy. The active syntheses of both nuclear and organellar DNA started in the cells forming the embryo proper 3 d after the initiation of embryogenesis, but not in cells forming suspensor-like cell aggregates. In the early globular embryo, active DNA syntheses were continuously observed in the whole embryo proper, except for the progenitor cells of the root apical meristem (RAM) and shoot apical meristem (SAM). These were recognized as slowly cycling cells with a non-BrdU-labelled nucleus and strongly BrdU-labelled organellar nucleoids. At the heart- and torpedo-shaped embryo stages, both nuclear and organellar DNA syntheses were inactive in the presumptive RAM and SAM. Thus, slowing down of organellar DNA synthesis is not coupled with, but is later than, that of nuclear DNA synthesis in the progenitor cells of the embryonic RAM and SAM. These findings clearly indicate that the timing of DNA synthesis is similar in the progenitor cells of both the RAM and SAM in the early stages of somatic embryogenesis. Received: 18 January 2000 / Accepted: 2 March 2000  相似文献   

4.
Recent nuclear transfer of organellar DNA is thought to result mainly in nonfunctional nuclear sequences or in genetic dysfunction. Here we show that nuclear exons encoding novel protein sequences can be generated by insertions of organellar DNA. Most of the protein sequences do not correspond to preexisting organellar coding sequences or they represent markedly reshaped protein domains, reflecting the recruitment and adaptation of encoded proteins to new functions. Organelle-derived DNA insertions might be responsible for many more ancient functional exon acquisitions that are not directly detectable.  相似文献   

5.
6.
The radioisotopic method used to assay acetylglutamate kinase (EC 2.7.2.8) of Neurospora crassa has been shown to detect two distinct enzymatically catalyzed reactions. The enzymes were separated by differential centrifugation into a cytosolic activity and an organellar activity. Both activities required ATP and were thermal-labile. The cytosolic activity was insensitive to inhibition by arginine and formed a stable reaction product in the absence of hydroxylamine. The organellar activity had an absolute requirement for hydroxylamine in order to form a stable reaction product. The product of the cytosolic activity was separated from acetylglutamate hydroxamate (the product of the organellar activity) and was identified as the cyclic amide pyroglutamate by cation exchange chromatography. The organellar activity has been implicated in arginine biosynthesis by the following criteria: it was completely and specifically inhibited by arginine concentrations as low as 200 microM; its level was elevated 2-fold in a mutant strain with derepressed levels of arginine biosynthetic enzymes; and it was absent in an arginine auxotrophic strain (the cytosolic activity was present). The organellar activity co-sedimented with mitochondria during isopycnic gradient centrifugation. The metabolic problems posed by a mitochondrial location of a feedback-sensitive enzyme and the cytosolic location of its effector are discussed.  相似文献   

7.
Pervasive migration of organellar DNA to the nucleus in plants   总被引:1,自引:0,他引:1  
A surprisingly large number of plant nuclear DNA sequences inferred to be remnants of chloroplast and mitochondrial DNA migration events were detected through computer-assisted database searches. Nineteen independent organellar DNA insertions, with a median size of 117 by (range of 38 to >785 bp), occur in the proximity of 15 nuclear genes. One fragment appears to have been passed through a RNA intermediate, based on the presence of an edited version of the mitochondrial gene in the nucleus. Tandemly arranged fragments from disparate regions of organellar genomes and from different organellar genomes indicate that the fragments joined together from an intracellular pool of RNA and/or DNA before they integrated into the nuclear genome. Comparisons of integrated sequences to genes lacking the insertions, as well as the occurrence of coligated fragments, support a model of random integration by end joining. All transferred sequences were found in noncoding regions, but the positioning of organellar-derived DNA in introns, as well as regions 5 and 3 to nuclear genes, suggests that the random integration of organellar DNA has the potential to influence gene expression patterns. A semiquantitative estimate was performed on the amount of organellar DNA being transferred and assimilated into the nucleus. Based on this database survey, we estimate that 3–7% of the plant nuclear genomic sequence files contain organellar-derived DNA. The timing and the magnitude of genetic flux to the nuclear genome suggest that random integration is a substantial and ongoing process for creating sequence variation.Correspondence to: J.L. Blanchard  相似文献   

8.
Apicomplexan protists such as Plasmodium and Toxoplasma contain a mitochondrion and a relic plastid (apicoplast) that are sites of protein translation. Although there is emerging interest in the partitioning and function of translation factors that participate in apicoplast and mitochondrial peptide synthesis, the composition of organellar ribosomes remains to be elucidated. We carried out an analysis of the complement of core ribosomal protein subunits that are encoded by either the parasite organellar or nuclear genomes, accompanied by a survey of ribosome assembly factors for the apicoplast and mitochondrion. A cross-species comparison with other apicomplexan, algal and diatom species revealed compositional differences in apicomplexan organelle ribosomes and identified considerable reduction and divergence with ribosomes of bacteria or characterized organelle ribosomes from other organisms. We assembled structural models of sections of Plasmodium falciparum organellar ribosomes and predicted interactions with translation inhibitory antibiotics. Differences in predicted drug–ribosome interactions with some of the modelled structures suggested specificity of inhibition between the apicoplast and mitochondrion. Our results indicate that Plasmodium and Toxoplasma organellar ribosomes have a unique composition, resulting from the loss of several large and small subunit proteins accompanied by significant sequence and size divergences in parasite orthologues of ribosomal proteins.  相似文献   

9.
Accumulating molecular data, particularly complete organellar genome sequences, continue to advance our understanding of the evolution of mitochondrial and chloroplast DNAs. Although the notion of a single primary origin for each organelle has been reinforced, new models have been proposed that tie the acquisition of mitochondria more closely to the origin of the eukaryotic cell per se than is implied by classic endosymbiont theory. The form and content of the ancestral proto-mitochondrial and proto-chloroplast genomes are becoming clearer but unusual patterns of organellar genome structure and organization continue to be discovered. The 'single-gene circle' arrangement recently reported for dinoflagellate chloroplast genomes is a notable example of a highly derived organellar genome.  相似文献   

10.
Consensus structure and evolution of 5S rRNA   总被引:9,自引:4,他引:5       下载免费PDF全文
A consensus structure model of 5S rRNA presenting all conserved nucleotides in fixed positions has been deduced from the primary and secondary structure of 71 eubacterial, archaebacterial, eukaryotic cytosolic and organellar molecules. Phylogenetically related groups of molecules are characterized by nucleotide deletions in helices III, IV and V, and by potential base pair interactions in helix IV. The group-specific deletions are correlated with the early branching pattern of a dendrogram calculated from nucleotide substitution data: the first major division separates the group of eubacterial and organellar molecules from a second group containing the common ancestors of archaebacterial and eukaryotic/cytosolic molecules. The earliest diverging branch of the eubacterial/organellar group includes molecules from Thermus thermophilus, T. aquaticus, Rhodospirillum rubrum, Paracoccus denitrificans and wheat mitochondria.  相似文献   

11.
The plant genome is partitioned across three distinct subcellular compartments: the nucleus, mitochondria, and plastids. Successful coordination of gene expression among these organellar genomes and the nuclear genome is critical for plant function and fitness. Whole genome duplication (WGD) events in the nucleus have played a major role in the diversification of land plants and are expected to perturb the relative copy number (stoichiometry) of nuclear, mitochondrial, and plastid genomes. Thus, elucidating the mechanisms whereby plant cells respond to the cytonuclear stoichiometric imbalance that follows WGDs represents an important yet underexplored question in understanding the evolutionary consequences of genome doubling. We used droplet digital PCR to investigate the relationship between nuclear and organellar genome copy numbers in allopolyploids and their diploid progenitors in both wheat and Arabidopsis. Polyploids exhibit elevated organellar genome copy numbers per cell, largely preserving the cytonuclear stoichiometry observed in diploids despite the change in nuclear genome copy number. To investigate the timescale over which cytonuclear stoichiometry may respond to WGD, we also estimated the organellar genome copy number in Arabidopsis synthetic autopolyploids and in a haploid-induced diploid line. We observed corresponding changes in organellar genome copy number in these laboratory-generated lines, indicating that at least some of the cellular response to cytonuclear stoichiometric imbalance is immediate following WGD. We conclude that increases in organellar genome copy numbers represent a common response to polyploidization, suggesting that maintenance of cytonuclear stoichiometry is an important component in establishing polyploid lineages.  相似文献   

12.
13.
Organellar DNAs in mitochondria and plastids are present in multiple copies and make up a substantial proportion of total cellular DNA despite their limited genetic capacity. We recently demonstrated that organellar DNA degradation occurs during pollen maturation, mediated by the Mg(2+) -dependent organelle exonuclease DPD1. To further understand organellar DNA degradation, we characterized a distinct mutant (dpd2). In contrast to the dpd1 mutant, which retains both plastid and mitochondrial DNAs, dpd2 showed specific accumulation of plastid DNAs. Multiple abnormalities in vegetative and reproductive tissues of dpd2 were also detected. DPD2 encodes the large subunit of ribonucleotide reductase, an enzyme that functions at the rate-limiting step of de novo nucleotide biosynthesis. We demonstrated that the defects in ribonucleotide reductase indirectly compromise the activity of DPD1 nuclease in plastids, thus supporting a different regulation of organellar DNA degradation in pollen. Several lines of evidence provided here reinforce our previous conclusion that the DPD1 exonuclease plays a central role in organellar DNA degradation, functioning in DNA salvage rather than maternal inheritance during pollen development.  相似文献   

14.
Bcl-2 family proteins are important regulators of apoptosis. They can be pro-apoptotic (e.g. Bid, Bax, and Bak) or anti-apoptotic (e.g. Bcl-2 and Bcl-x(L)). The current study examined Bid-induced apoptosis and its inhibition by Bcl-2. Transfection of Bid led to apoptosis in HeLa cells. In these cells, Bid was processed into active forms of truncated Bid or tBid. Following processing, tBid translocated to the membrane-bound organellar fraction. Bcl-2 co-transfection inhibited Bid-induced apoptosis but did not prevent Bid processing or tBid translocation. On the other hand, Bcl-2 blocked the release of mitochondrial cytochrome c in Bid-transfected cells, suggesting actions at the mitochondrial level. Alkaline treatment stripped off tBid from the membrane-bound organellar fraction of Bid plus Bcl-2-co-transfected cells, but not from cells transfected with only Bid, suggesting inhibition of tBid insertion into mitochondrial membranes by Bcl-2. Bcl-2 also prevented Bid-induced Bax translocation from cytosol to the membrane-bound organellar fraction. Finally, Bcl-2 diminished Bid-induced oligomerization of Bax and Bak within the membrane-bound organellar fraction, shown by cross-linking experiments. In conclusion, Bcl-2 inhibited Bid-induced apoptosis at the mitochondrial level by blocking cytochrome c release, without suppressing Bid processing or activation. Critical steps blocked by Bcl-2 included tBid insertion, Bax translocation, and Bax/Bak oligomerization in the mitochondrial membranes.  相似文献   

15.
16.
Plant mitochondrial genomes (mtDNAs) are large and undergo frequent recombination events. A common phenotype that emerges as a consequence of altered mtDNA structure is cytoplasmic-male sterility (CMS). The molecular basis for CMS remains unclear, but it seems logical that altered respiration activities would result in reduced pollen production. Analysis of tobacco (Nicotiana tabacum) mtDNAs indicated that CMS-associated loci often contain fragments of known organellar genes. These may assemble with organellar complexes and thereby interfere with normal respiratory functions. Here, we analyzed whether the expression of truncated fragments of mitochondrial genes (i.e. atp4, cox1 and rps3) may induce male sterility by limiting the biogenesis of the respiratory machinery. cDNA fragments corresponding to atp4f, cox1f and rps3f were cloned in-frame to a mitochondrial localization signal and a C-termini HA-tag under a tapetum-specific promoter and introduced to tobacco plants by Agrobacterium-mediated transformation. The constructs were then analyzed for their effect on mitochondrial activity and pollen fertility. Atp4f , Cox1f and Rps3f plants demonstrated male sterility phenotypes, which were tightly correlated with the expression of the recombinant fragments in the floral meristem. Fractionation of native organellar extracts showed that the recombinant ATP4f-HA, COX1f-HA and RPS3f-HA proteins are found in large membrane-associated particles. Analysis of the respiratory activities and protein profiles indicated that organellar complex I was altered in Atp4f, Cox1f and Rps3f plants.  相似文献   

17.
More than half a century ago, reversible protein phosphorylation was linked to mitochondrial metabolism through the regulation of pyruvate dehydrogenase. Since this discovery, the number of identified mitochondrial protein phosphorylation sites has increased by orders of magnitude, driven largely by technological advances in mass spectrometry-based phosphoproteomics. However, the majority of these modifications remain uncharacterized, rendering their function and relevance unclear. Nonetheless, recent studies have shown that disruption of resident mitochondrial protein phosphatases causes substantial metabolic dysfunction across organisms, suggesting that proper management of mitochondrial phosphorylation is vital for organellar and organismal homeostasis. While these data suggest that phosphorylation within mitochondria is of critical importance, significant gaps remain in our knowledge of how these modifications influence organellar function. Here, we curate publicly available datasets to map the extent of protein phosphorylation within mammalian mitochondria and to highlight the known functions of mitochondrial-resident phosphatases. We further propose models by which phosphorylation may affect mitochondrial enzyme activities, protein import and processing, and overall organellar homeostasis.  相似文献   

18.
Recent efforts to define the mitochondrial genome of malaria parasites have uncovered an unexpected complexity: there are two almost totally dissimilar organellar DNA molecules. lain Wilson, Malcolm Gardner, Jean Feagin and Donald Williamson discuss the surprising possibility that Plasmodium may have, in addition to the nuclear genome, two unrelated organellar genomes, one evidently mitochondrial and the other of unknown function.  相似文献   

19.
Summary The DNA of the organellar genomes of Allium cepa has been examined to detect restriction fragment length polymorphisms. Differences can be shown between both the chloroplastal and mitochondrial genomes of the N and cms-S cytoplasms in their restriction fragment profiles. Southern blot analysis of the mtDNA profiles using probes containing defined mitochondrial genes also detected polymorphisms. No differences can be shown between the organellar genomes of the N and cms-T onions by either of these techniques. These data indicate different origins for the two sterility-conferring cytoplasms, suggesting autoplasmic and alloplasmic origins for the cms-T and cms-S cytoplasms, respectively. No evidence of the presence of virus-like particles was found in any of the cytoplasms.  相似文献   

20.
In our studies to analyze the structure/function relationships among cytoplasmic and organellar seryl-tRNA synthetases (SerRS), we have characterized a Zea mays cDNA (SerZMm) encoding a protein with significant similarity to prokaryotic SerRS enzymes. To demonstrate the functional identity of SerZMm, the gene sequence encoding the putative mature protein was cloned. This construct complemented in vivo a temperature-sensitive Escherichia coli serS mutant strain. The mature SerZMm protein overexpressed in Escherichia coli efficiently aminoacylated bacterial tRNASer in vitro, while yeast tRNA was a poor substrate. These data identify SerZMm as an organellar maize seryl-tRNA synthetase, the first plant organellar SerRS to be cloned. The analysis of its N-terminal targeting signal suggests a mitochondrial function for the SerZMm protein in maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号