首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neuropeptide Y (NPY), a sympathetic cotransmitter, acts via G protein-coupled receptors to stimulate constriction and vascular smooth muscle cell (VSMC) proliferation through interactions with its Y1 receptors. However, VSMC proliferation appears bimodal, with high- and low-affinity peaks differentially blocked by antagonists of both Y1 and Y5 receptors. Here, we sought to determine the signaling mechanisms of NPY-mediated bimodal mitogenesis. In rat aortic VSMCs, NPY's mitogenic effect at all concentrations was blocked by pertussis toxin and was associated with decreased forskolin-stimulated cAMP levels. NPY also increased intracellular calcium levels; in contrast to mitogenesis, this effect was dose dependent. The rise in intracellular Ca2+ depended on extracellular Ca2+ and was mediated via activation of Y1 receptors, but not Y5 receptors. Despite differences in calcium, the signaling pathways activated at low and high NPY concentrations were similar. The mitogenic effect of the peptide at all doses was completely blocked by inhibitors of calcium/calmodulin-dependent kinase II (CaMKII), protein kinase C (PKC), and mitogen-activated protein kinase kinase, MEK1/2. Thus, in VSMCs, NPY-mediated mitogenesis signals primarily via Y1 receptors activating 2 Ca2+-dependent, growth-promoting pathways -- PKC and CaMKII. At the high-affinity peak, these 2 pathways are amplified by Y5 receptor-mediated, calcium-independent inhibition of the adenylyl cyclase - protein kinase A (PKA) pathway. All 3 mechanisms converge to the extracellular signal-regulated kinases (ERK1/2) signaling cascade and lead to VSMC proliferation.  相似文献   

2.
Neuropeptide Y (NPY(1-36)), a sympathetic cotransmitter and neurohormone, has pleiotropic activities ranging from the control of obesity to anxiolysis and cardiovascular function. Its actions are mediated by multiple Gi/o-coupled receptors (Y1-Y5) and modulated by dipeptidyl peptidase IV (DPPIV/cd26), which inactivates NPY's Y1-agonistic activity but generates the Y2 and Y5-agonist, NPY(3-36). Released by sympathetic activity, NPY is a major mediator of stress, responsible for prolonged vasoconstriction via Y1 receptors. Y1 receptors also mediate NPY's potent vascular growth-promoting activity leading in vivo in rodents to neointima formation. This and the association of a polymorphism of the NPY signal peptide with increased lipidemia and carotid artery thickening in humans strongly suggest NPY's role in atherosclerosis. NPY and DPPIV/cd26 are also coexpressed in the endothelium, where the peptide activates angiogenesis. A similar system exists in immune cells, where NPY and DPPIV/cd26 are coactivated and involved in the modulation of cytokine release and immune cell functions. Thus, NPY, both a messenger and a modulator for all three systems, is poised to play an important regulatory role facilitating interactions among sympathetic, vascular and immune systems in diverse pathophysiological conditions such as hypertension, atherosclerosis and stress-related alterations of immunity.  相似文献   

3.
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken.  相似文献   

4.
Adrenergic receptor agonists are known to attenuate the proliferative response of human lymphocytes after activation; however, their mechanism of action is unknown. Since expression of interleukin 2 (IL-2) receptors is a prerequisite for proliferation, the effect of beta-adrenergic receptor agonists on lymphocyte IL-2 receptors was studied on both mitogen-stimulated lymphocytes and IL-2-dependent T lymphocyte cell lines. In both cell types the beta-adrenergic receptor agonist isoproterenol blocked the expression of IL-2 receptors, as determined with the IL-2 receptor anti-TAC antibody. To determine the effect of beta-adrenergic agonists on expression of the high affinity IL-2 receptors, [125I]IL-2 binding studies were performed at concentrations selective for high affinity sites. No significant effect of beta-adrenergic agonists on high affinity IL-2 receptor sites could be detected. The data demonstrate that beta-adrenergic receptor agonists down-regulate IL-2 receptors primarily affecting low affinity sites.  相似文献   

5.
Agonist-induced changes in beta-adrenergic receptors on intact cells   总被引:3,自引:0,他引:3  
Competition by beta-adrenergic agonists and antagonists for 125I-pindolol binding sites on intact cells (1321N1 human astrocytoma and C62B rat glioma) was measured using short time binding assays as previously described (Toews, M. L., Harden, T. K., and Perkins, J. P. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3553-3557). Preincubation of cells with agonists converted about half of the cellular beta-adrenergic receptors from a form exhibiting high affinity for the agonists isoproterenol and epinephrine and the antagonist sotalol to a form exhibiting much lower apparent affinity for these ligands in short time assays. Exposure to agonists did not alter the affinity of receptors for the antagonist metoprolol. This change in the ligand binding properties of the receptor was rapid (t1/2 = 1-2 min following a lag of about 0.5 min), reversible (t1/2 = 6-8 min), and dependent on the agonist concentration present during the preincubation (K0.5 = 15 nM for isoproterenol). Both isoproterenol and sotalol attained equilibrium with the high affinity receptors very rapidly but equilibrated only slowly with those receptors exhibiting low apparent affinity in short time assays. These results are interpreted in terms of a model which postulates that both the low apparent affinity in short time assays and the subsequent slow equilibration of hydrophilic ligands with these receptors result from agonist-induced internalization of a fraction of cell surface beta-adrenergic receptors. The relationship of this change in receptor binding properties to other aspects of agonist-induced desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system is discussed.  相似文献   

6.
Ligand binding to rodent pancreatic polypeptide-responding neuropeptide Y (NPY) receptors (here termed PP/NPY receptors), or to cloned Y4 or Y5 receptors, is selectively inhibited by amiloride, peptide or alkylating modulators of sodium transport. The PP/NPY and Y4 receptors are also selectively blocked by human or rat pancreatic polypeptide (PP) and the blocking peptides are not dissociated by high concentrations of alkali chlorides (which restore most of the binding of subtype-selective agonists to Y1 and Y2 sites). The PP/NPY receptors could also be blocked by NPY and related full-length peptides, including Y1-selective agonists (IC50 300-400 pM). The cloned Y(4) receptors from three species are much less sensitive to NPY or PYY. The sensitivity of both the PP/NPY sites and the Y(4) sites to Y2-selective peptides is quite low. The ligand attachment to PP/NPY sites is also very sensitive to peptidic Y1 antagonist ((Cys31,NVal34NPY27-36))2, which however blocks these sites at much higher molarities. Blockade of PP/NPY and Y4 sites by agonist peptides can be largely prevented by N5-substituted amiloride modulators of Na+ transport, and by RFamide NRNFLRF.NH2, but not by Ca2+ channel blockers, or by inhibitors of K+ transport. Protection of both PP/NPY and Y4 sites against blockade by human or rat pancreatic polypeptide is also afforded by short N-terminally truncated NPY-related peptides. The above results are consistent with a stringent and selective activity regulation for rabbit PP/NPY receptor(s) that may serve to differentiate agonists and constrain signaling, and could involve transporter-like interactants.  相似文献   

7.
8.
Siberian hamsters (Phodopus sungorus) undergo bouts of daily torpor during which body temperature decreases by as much as 20 degrees C and provides a significant savings in energy expenditure. Natural torpor in this species is normally triggered by winterlike photoperiods and low ambient temperatures. Intracerebroventricular injection of neuropeptide Y (NPY) reliably induces torporlike hypothermia that resembles natural torpor. NPY-induced torporlike hypothermia is also produced by intracerebroventricular injections of an NPY Y1 receptor agonist but not by injections of an NPY Y5 receptor agonist. In this research, groups of cold-acclimated Siberian hamsters were either coinjected with a Y1 receptor antagonist (1229U91) and NPY or were coinjected with a Y5 receptor antagonist (CGP71683) and NPY in counterbalanced designs. Paired vehicle + NPY induced torporlike hypothermia in 92% of the hamsters, whereas coinjection of Y1 antagonist + NPY induced torporlike hypothermia in 4% of the hamsters. In contrast, paired injections of vehicle + NPY and Y5 antagonist + NPY induced torporlike hypothermia in 100% and 91% of the hamsters, respectively. Although Y5 antagonist treatment alone had no effect on body temperature, Y1 antagonist injections produced hyperthermia compared with controls. Both Y1 antagonist and Y5 antagonist injections significantly reduced food ingestion 24 h after treatment. We conclude that activation of NPY 1 receptors is both sufficient and necessary for NPY-induced torporlike hypothermia.  相似文献   

9.
The effects of neuropeptide Y (NPY) on pineal gland cyclic AMP (cAMP) accumulation were investigated using dispersed pinealocytes from rats. NPY inhibited the intracellular cAMP accumulation stimulated by isoproterenol and norepinephrine in a dose-dependent manner during a 10-min incubation of pinealocytes. NPY (1 x 10(-7) M) also inhibited vasoactive intestinal peptide (VIP)- and cholera toxin-induced cAMP accumulation. The inhibitory effect of NPY on isoproterenol-induced cAMP accumulation was completely abolished by a 5-h pretreatment of pinealocytes with 1 microgram/ml of pertussis toxin (PT). These results suggest that NPY participates in modulation of cAMP production in the rat pineal gland through PT-sensitive G protein. Yohimbine, an alpha 2-adrenergic antagonist, blocked NPY inhibition of isoproterenol-stimulated cAMP accumulation. On the other hand, the alpha 2-adrenergic agonist clonidine by itself did not affect cAMP accumulation stimulated by isoproterenol but significantly potentiated NPY action. The present study demonstrates that NPY inhibits beta-adrenergic or VIPergic stimulation of the pineal gland cAMP accumulation. The inhibitory effect of NPY is mediated through PT-sensitive G protein. Our results also suggest that NPY exerts its action to affect alpha 2-adrenoceptor function.  相似文献   

10.
We investigated the mitogenic effect, measured as [3H]thymidine incorporation, of neuropeptide Y (NPY) on smooth muscle cells (SMCs) from human subcutaneous arteries (diameter: 0.4 mm). NPY stimulated DNA synthesis in a concentration-dependent manner, Emax 32 +/- 5% relative to control. The effect was potently antagonised by the NPY Y1 receptor antagonist BIBP3226 ((R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]-D-arginine-a mide), indicating the effect to be mediated via the NPY Y1 receptor. Noradrenaline (NA) also induced mitogenesis, Emax 35 +/- 10% relative to control. When added together, NPY and NA potentiated the [3H]thymidine incorporation, Emax 109 +/- 38% relative to control. Also, this effect seems to be mediated by the NPY Y1 receptor, since BIBP3226 blocked the effect (44 +/- 9% relative to control). The mitogenic effect of NPY and NA, two important transmitters of the sympathetic nervous system, might have clinical consequences on conditions with elevated sympathetic nerve activity.  相似文献   

11.
Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.  相似文献   

12.
Beta-adrenergic receptors were characterized in freshly excised fetal mouse testis using the radioiodinated antagonist iodocyanopindolol (ICYP). [125I]-CYP bound to a single class of high affinity sites with a KD value of 42.2 +/- 7.0 pM. Adrenergic agonists competed for ICYP binding sites with the following order of potency: (-)isoproterenol greater than (-)epinephrine much greater than (-)norepinephrine which is typical for a beta 2-adrenergic receptor. A selective beta 2-receptor antagonist ICI 118-551 showed an approximately 200 fold higher affinity than the beta 1-selective compound, betaxolol. The beta-adrenergic agonist (-)isoproterenol did not or slightly affect testosterone production by freshly isolated fetal Leydig cells. The ability of fetal Leydig cells to respond to (-)isoproterenol increased during culture. This change in responsiveness was not accompanied either by modification of the number of binding sites or by change in the binding affinity. Taken together these data suggest that i) the stimulatory effect of (-)isoproterenol on testosterone production by cultured fetal Leydig cells is mediated through beta 2-adrenergic receptors ii), the inability of freshly Leydig cells to respond to catecholamines is probably due to post receptor events.  相似文献   

13.
The neuropeptide Y-family receptor Y4 differs extensively between human and rat in sequence, receptor binding, and anatomical distribution. We have investigated the differences in binding profile between the cloned human, rat, and guinea pig Y4 receptors using NPY analogues with single amino acid replacements or deletion of the central portion. The most striking result was the increase in affinity for the rat receptor, but not for human or guinea pig, when amino acid 34 was replaced with proline; [Ahx(8-20),Pro(34)]NPY bound to the rat Y4 receptor with 20-fold higher affinity than [Ahx(8-20)]NPY. Also, the rat Y4 tolerates alanine in position 34 since p[Ala(34)]NPY bound with similar affinity as pNPY while the affinity for hY4 and gpY4 decreased about 50-fold. Alanine substitutions in position 33, 35, and 36 as well as the large loop-deletion, [Ahx(5-24)]NPY, reduced the binding affinity to all three receptors more than 100-fold. NPY and PYY competed with (125)I-hPP at Y4 receptors expressed in CHO cells according to a two-site model. This was investigated for gpY4 by saturation with either radiolabeled hPP or pPYY. The number of high-affinity binding-sites for (125)I-pPYY was about 60% of the receptors recognized by (125)I-hPP. Porcine [Ala(34)]NPY and [Ahx(8-20)]NPY bound to rY4 (but not to hY4 or gpY4) according to a two-site model. These results suggest that different full agonists can distinguish between different active conformations of the gpY4 receptor and that Y4 may display functional differences in vivo between human, guinea pig, and rat.  相似文献   

14.
Many mammals, nearing the end of life, spontaneously decrease their food intake and body weight, a stage we refer to as senescence. The spontaneous decrease in food intake and body weight is associated with attenuated responses to intracerebroventricular injections of neuropeptide Y (NPY) compared with old presenescent or with young adult rats. In the present study, we tested the hypothesis that this blunted responsiveness involves the number and expression of hypothalamic paraventricular nucleus (PVN) Y(1) and/or Y(5) NPY receptors, both of which are thought to mediate NPY-induced food intake. We found no significant difference in mRNA levels, via quantitative PCR, for Y(1) and Y(5) receptors in the PVN of senescent vs. presenescent rats. In contrast, immunohistochemistry indicated that the number of PVN neurons staining for Y(1) receptor protein was greater in presenescent compared with senescent rats. We conclude that a decreased expression and number of Y(1) or Y(5) receptors in the PVN cannot explain the attenuated responsiveness of the senescent rats to exogenous NPY.  相似文献   

15.
Cardiovascular and respiratory effects of intracerebroventricular (icv) administration of neuropeptide Y (NPY) and separate, preferential agonists for NPY Y1 and Y2 receptors were observed in anaesthetised dogs. Central injections of NPY resulted in significant cardiac slowing and decreases in arterial pressure. These cardiovascular effects were blocked by central injection of the NPY Y1- preferring antagonist 1229U91. Central injection of NPY did not have a significant effect on ventilation, but the NPY Y1 antagonist 1229U91 administered alone caused a significant increase in ventilation. The NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreased ventilation while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24--36 significantly increased it. A similar inverse relationship was seen with respect to blood pressure, with the NPY Y1-receptor agonist [Leu31Pro34] NPY significantly decreasing blood pressure, while the NPY Y2 receptor agonist N-acetyl [Leu28Leu31] NPY 24-36 significantly increased it. These findings suggest a role for NPY Y1 receptors in pathways mediating decreases in ventilation and blood pressure, and for NPY Y2 receptors in those mediating increased ventilation and blood pressure.  相似文献   

16.
Neuropeptide Y (NPY) is known to induce robust feeding through the action of NPY receptors in the hypothalamus. Among the subtypes of NPY receptors, Y(1) receptors may play a key role in feeding regulation. In the present study, we demonstrated that a novel Y(1) antagonist, J-104870, shows high selectivity and potency for the Y(1) receptor with an anorexigenic effect on NPY-mediated feeding. J-104870 displaced [(125)I]peptide YY (PYY) binding to cloned human and rat Y(1) receptors with K(i) values of 0.29 and 0.54 nM, respectively, and inhibited the NPY (10 nM)-induced increase in intracellular calcium levels (IC(50) = 3.2 nM) in cells expressing human Y(1) receptors. In contrast, J-104870 showed low affinities for human Y(2) (K(i) > 10 microM), Y(4) (K(i) > 10 microM), and Y(5) receptors (K(i) = 6 microM). In rat hypothalamic membranes, J-104870 also completely displaced the binding of [(125)I]1229U91, which is known to bind to the typical Y(1) receptor, with a high affinity (K(i) = 2.0 nM). Intracerebroventricular (ICV) injection of J-104870 (200 microg) significantly suppressed NPY (5 microg)-induced feeding in satiated Sprague-Dawley rats by 74%. Furthermore, ICV and oral administration of J-104870 (200 microg and 100 mg/kg, respectively) significantly suppressed spontaneous food intake in Zucker fatty rats. These findings suggested that J-104870 is a selective and potent nonpeptide Y(1) antagonist with oral bioavailability and brain penetrability. In addition, the anorexigenic effect of J-104870 clearly revealed the participation of the Y(1) receptor in NPY-mediated feeding regulation. The potent and orally active Y(1) antagonist J-104970 is a useful tool for elucidating the physiological roles of NPY in obesity.  相似文献   

17.
We recently demonstrated that heterologous desensitization of adenylate cyclase in turkey erythrocytes is highly correlated with phosphorylation of the beta-adrenergic receptor. In contrast, little is known of the biochemical mechanisms underlying the homologous form of beta-adrenergic receptor desensitization, which is agonist-specific and not cAMP-mediated. Accordingly, the present studies were undertaken to examine if phosphorylation of the beta-adrenergic receptor is also associated with this form of desensitization in a well studied model system, the frog erythrocyte. Preincubation of these cells with the beta-adrenergic agonist isoproterenol leads to a 45% decline in isoproterenol-stimulated adenylate cyclase activity without significant changes in basal, prostaglandin E1-, NaF-, guanyl-5'-yl-imidodiphosphate-, forskolin-, or MnCl2-stimulated enzyme activities. There is also a 48% decline in [125I]iodocyanopindolol membrane binding sites. Conversely, preincubation of the cells with prostaglandin E1 attenuates only the prostaglandin E1-stimulated enzyme activity and does not affect [125I]iodocyanopindolol binding. Phosphorylation of the beta-adrenergic receptor was assessed by preincubating the cells with 32Pi and desensitizing them, and subsequently purifying the receptors by affinity chromatography. Under basal conditions there is about 0.62 mol of phosphate/mol of receptor whereas after desensitization with isoproterenol this increases to 1.9 mol/mol. This isoproterenol-induced receptor phosphorylation exhibits stereospecificity and is blocked by the beta-adrenergic antagonist propranolol. In addition, preincubation with prostaglandin E1 does not promote beta-adrenergic receptor phosphorylation. These data suggest that receptor phosphorylation is involved in homologous as well as heterologous forms of desensitization and may provide a unifying mechanism for desensitization of adenylate cyclase-coupled hormone receptors.  相似文献   

18.
Agonist treatment of C6-glioma cells induces two altered states in beta-adrenergic receptors, a low affinity for the hydrophilic antagonist CGP-12177 and a low affinity for agonists like isoproterenol. We present evidence that, in cells not treated to inhibit receptor internalization, the two properties occur with a different time course, the low affinity for isoproterenol preceding that for CGP-12177. In that the low affinity for CGP-12177 is due to the internalization of the receptor, the results indicate that uncoupling of the receptor, indicated by the low affinity for isoproterenol, occurs while the receptor is still located on the cell surface. Removal of the agonist leads to reappearance of the receptor to the plasma membrane followed by loss of the uncoupled state.  相似文献   

19.
Previously, in vivo studies showed that neuropeptide Y (NPY) elevates vascular permeability in isolated lung perfusion preparations, possibly through binding to the NPY Y(3) receptor. The present study used monolayers in a double-chamber culture method under conditions of normoxia (5% CO(2)-20% O(2)-75% N(2)) or hypoxia (5% CO(2)-5% O(2)-90% N(2)) to test the hypothesis that NPY directly affects rat aortic endothelial cells (RAECs). RAECs were cultured on the base of the upper chamber, into which FITC-labeled albumin was introduced, and permeation into the lower chamber was measured. The RAEC monolayer was treated with 10(-8)-3 x 10(-7) M NPY for 2 h in normoxia or hypoxia. In hypoxia, NPY concentration dependently increased the permeability of the RAEC monolayer, whereas in normoxia no significant change was observed. Peptide YY, NPY Y(1), and NPY Y(2) receptor agonists and NPY Y(1) receptor antagonist exerted no significant effects under hypoxic conditions. NPY-(18-36), an NPY Y(3) receptor antagonist, elicited an inhibitory action on the NPY-induced increase in monolayer permeability. Furthermore, neither N-monomethyl-l-arginine, a nitric oxide synthase inhibitor, the bradykinin B(2) receptor antagonist FK-3657, nor the vascular endothelial growth factor receptor-coupled tyrosine kinase inhibitor tyrphostin SU-1498, injected into the medium of the upper chamber, affected the NPY-induced permeability changes under hypoxic conditions. The results suggest that the NPY-induced increase in permeability across the RAEC monolayer is closely related to low O(2) tension, possibly mediated by direct action on the NPY Y(3) receptor expressed on the endothelial cell membrane. Furthermore, this NPY-induced increase is not likely due to nitric oxide, bradykinin, or vascular endothelial growth factor.  相似文献   

20.
Malmström RE 《Life sciences》2001,69(17):1999-2005
The effects of the first selective, non-peptide, NPY Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6h)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamid (BIIE0246) were studied on splenic vascular responses evoked in the pig in vivo. BIIE0246 abolished the splenic vasoconstrictor response to the NPY Y2 receptor agonist N-acetyl[Leu25Leu31]NPY(24-36), but did not affect the response to the NPY Y1 receptor agonist [Leu31Pro34]NPY, which in turn was abolished by the selective NPY Y1 receptor antagonist (2R)-5-([amino(imino)methyl]amino)-2-[(2,2-diphenylacetyl)amino]-N-[(IR)-1-(4-hydroxyphenyl)ethyl]-pentanamide (H 409/22). Furthermore, the PYY-evoked splenic vasoconstrictor response was partially antagonized by BIIE0246 and subsequently almost abolished by the addition of H 409/22. It is concluded that BIIE0246 exerts selective (vs the NPY Y1 receptor) NPY Y2 receptor antagonism, and thus represents an interesting tool for classification of NPY receptors, in vivo. In addition, evidence for NPY Y2 receptor mediated vasoconstriction was presented. Furthermore, both NPY Y1 and Y2 receptors are involved in the splenic vasoconstrictor response to PYY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号