首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research was performed to test the hypothesis that acoustic-resonance spectrometry (ARS) is able to rapidly and accurately differentiate tablets of similar size and shape. The US Food and Drug Administration frequently orders recalls of tablets because of labeling problems (eg, the wrong tablet appears in a bottle). A high-throughput, nondestructive method of online analysis and label comparison before shipping could obviate the need for recall or disposal of a batch of mislabeled drugs, thus saving a company considerable expense and preventing a major safety risk. ARS is accurate and precise as well as inexpensive and nondestructive, and the sensor, is constructed from readily available parts, suggesting utility as a process analytical technology (PAT). To test the classification ability of ARS, 5 common household tablets of similar size and shape were chosen for analysis (aspirin, ibuprofen, acetaminophen, vitamin C, and vitamin B12). The measures of successful tablet identification were intertablet distances in nonparametric multidimensional standard deviations (MSDs) greater than, 3 and intratablet MSDs less than 3, as calculated from an extended bootstrap erroradjusted single sample technique. The average intertablet MSD was 65.64, while the average intratablet MSD from cross-validation was 1.91. Tablet mass (r2=0.977), thickness (r2=0.977), and density (r2=0.900) were measured very accurately from the AR spectra, each with less than 10% error. Tablets were identified correctly with only 250 ms data collection time. These results demonstrate that ARS effectively identified and characterized the 5 types of tablets and could potentially serve as a rapid high-throughput online pharmaceutical sensor. Published: March 17, 2006  相似文献   

2.
In the process analytical technology (PAT) initiative, the application of sensors technology and modeling methods is promoted. The emphasis is on Quality by Design, online monitoring, and closed-loop control with the general aim of building in product quality into manufacturing operations. As a result, online high-throughput process analyzers find increasing application and therewith high amounts of highly correlated data become available online. In this study, an hybrid chemometric/mathematical modeling method is adopted for data analysis, which is shown to be advantageous over the commonly used chemometric techniques in PAT applications. This methodology was applied to the analysis of process data of Bordetella pertussis cultivations, namely online data of near-infrared, (NIR), pH, temperature and dissolved oxygen, and off-line data of biomass, glutamate, and lactate concentrations. The hybrid model structure consisted of macroscopic material balance equations in which the specific reactions rates are modeled by nonlinear partial least square (PLS). This methodology revealed a significant higher statistical confidence in comparison to PLSs, translated in a reduction of mean squared prediction errors (e.g., individual root mean squared prediction errors calibration/validation obtained through the hybrid model for the concentrations of lactate: 0.8699/0.7190 mmol/L; glutamate: 0.6057/0.2917 mmol/L; and biomass: 0.0520/0.0283 OD; and obtained through the PLS model for the concentrations of lactate: 1.3549/1.0087 mmol/L; glutamate: 0.7628/0.3504 mmol/L; and biomass: 0.0949/0.0412 OD). Moreover, the analysis of loadings and scores in the hybrid approach revealed that process features can, as for PLS, be extracted by the hybrid method.  相似文献   

3.
This article is the second of a series of articles detailing the development of near-infrared (NIR) methods for solid dosage-form analysis. Experiments were conducted at the Duquesne University Center for Pharmaceutical Technology to demonstrate a method for developing and validating NIR models for the analysis of active pharmaceutical ingredient (API) content and hardness of a solid dosage form. Robustness and cross-validation testing were used to optimize the API content and hardness models. For the API content calibration, the optimal model was determined as multiplicative scatter correction with Savitsky-Golay first-derivative preprocessing followed by partial least-squares (PLS) regression including 4 latent variables. API content calibration achieved root mean squared error (RMSE) and root mean square error of cross validation (RMSECV) of 1.48 and 1.80 mg, respectively. PLS regression and baseline-fit calibration models were compared for the prediction of tablet hardness. Based on robustness testing, PLS regression was selected for the final hardness model, with RMSE and RMSECV of 8.1 and 8.8 N, respectively. Validation testing indicated that API content and hardness of production-scale tablets is predicted with root mean square error of prediction of 1.04 mg and 8.5 N, respectively. Explicit robustness testing for high-flux noise and wavelength uncertainty demonstrated the robustness of the API concentration calibration model with respect to normal instrument operating conditions. Published: October 6, 2005 The views presented in this article do not necessarily reflect those of the Food and Drug Administration.  相似文献   

4.
For many protein therapeutics including monoclonal antibodies, aggregate removal process can be complex and challenging. We evaluated two different process analytical technology (PAT) applications that couple a purification unit performing preparative hydrophobic interaction chromatography (HIC) to a multi-angle light scattering (MALS) system. Using first principle measurements, the MALS detector calculates weight-average molar mass, Mw and can control aggregate levels in purification. The first application uses an in-line MALS to send start/stop fractionation trigger signals directly to the purification unit when preset Mw criteria are met or unmet. This occurs in real-time and eliminates the need for analysis after purification. The second application uses on-line ultra-high performance size-exclusion liquid chromatography to sample from the purification stream, separating the mAb species and confirming their Mw using a µMALS detector. The percent dimer (1.5%) determined by the on-line method is in agreement with the data from the in-line application (Mw increase of approximately 2750 Da). The novel HIC-MALS systems demonstrated here can be used as a powerful tool for real-time aggregate monitoring and control during biologics purification enabling future real time release of biotherapeutics.  相似文献   

5.
Process analytical technology (PAT) has been gaining momentum in the biopharmaceutical community due to the potential for continuous real time quality assurance resulting in improved operational control and compliance. Two imperatives for implementing any PAT tool are that “variability is managed by the process” and “product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions.” Recently, we have been examining the feasibility of applying different analytical tools to bioprocessing unit operations. We have previously demonstarted that commercially available online‐high performance liquid chromatography and ultra performance liquid chromatography systems can be used for analysis that can facilitate real‐time decisions for column pooling based on product quality attributes (Rathore et al., 2008 a,b). In this article, we review an at‐line tool that can be used for pooling of process chromatography columns. We have demonstrated that our tryptophan fluorescence method offers a feasible approach and meets the requirements of a PAT application. It is significantly faster than the alternative of fractionation, offline analysis followed by pooling. Although the method as presented here is not an online method, this technique may offer better resolution for certain applications and may be a more optimal approach as it is very conducive to implementation in a manufacturing environment. This technique is also amenable to be used as an online tool via front face fluorescence measurements done concurrently with product concentration determination by UV. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
A study of NIR as a tool for process monitoring of thermophilic anaerobic digestion boosted by glycerol has been carried out, aiming at developing simple and robust Process Analytical Technology modalities for on-line surveillance in full scale biogas plants. Three 5 L laboratory fermenters equipped with on-line NIR sensor and special sampling stations were used as a basis for chemometric multivariate calibration. NIR characterisation using Transflexive Embedded Near Infra-Red Sensor (TENIRS) equipment integrated into an external recurrent loop on the fermentation reactors, allows for representative sampling, of the highly heterogeneous fermentation bio slurries. Glycerol is an important by-product from the increasing European bio-diesel production. Glycerol addition can boost biogas yields, if not exceeding a limiting 5-7 g L(-1) concentration inside the fermenter-further increase can cause strong imbalance in the anaerobic digestion process. A secondary objective was to evaluate the effect of addition of glycerol, in a spiking experiment which introduced increasing organic overloading as monitored by volatile fatty acids (VFA) levels. High correlation between on-line NIR determinations of glycerol and VFA contents has been documented. Chemometric regression models (PLS) between glycerol and NIR spectra needed no outlier removals and only one PLS-component was required. Test set validation resulted in excellent measures of prediction performance, precision: r(2) = 0.96 and accuracy = 1.04, slope of predicted versus reference fitting. Similar prediction statistics for acetic acid, iso-butanoic acid and total VFA proves that process NIR spectroscopy is able to quantify all pertinent levels of both volatile fatty acids and glycerol.  相似文献   

7.
8.
Implementing real‐time product quality control meets one or both of the key goals outlined in FDA's PAT guidance: “variability is managed by the process” and “product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions.” The first part of the paper presented an overview of PAT concepts and applications in the areas of upstream and downstream processing. In this second part, we present principles and case studies to illustrate implementation of PAT for drug product manufacturing, rapid microbiology, and chemometrics. We further present our thoughts on how PAT will be applied to biotech processes going forward. The role of PAT as an enabling component of the Quality by Design framework is highlighted. Integration of PAT with the principles stated in the ICH Q8, Q9, and Q10 guidance documents is also discussed. Biotechnol. Bioeng. 2010; 105: 285–295. Published 2009 Wiley Periodicals, Inc.  相似文献   

9.
Process analytical technology (PAT) is an initiative from the US FDA combining analytical and statistical tools to improve manufacturing operations and ensure regulatory compliance. This work describes the use of a continuous monitoring system for a protein refolding reaction to provide consistency in product quality and process performance across batches. A small‐scale bioreactor (3 L) is used to understand the impact of aeration for refolding recombinant human vascular endothelial growth factor (rhVEGF) in a reducing environment. A reverse‐phase HPLC assay is used to assess product quality. The goal in understanding the oxygen needs of the reaction and its impact to quality, is to make a product that is efficiently refolded to its native and active form with minimum oxidative degradation from batch to batch. Because this refolding process is heavily dependent on oxygen, the % dissolved oxygen (DO) profile is explored as a PAT tool to regulate process performance at commercial manufacturing scale. A dynamic gassing out approach using constant mass transfer (kLa) is used for scale‐up of the aeration parameters to manufacturing scale tanks (2,000 L, 15,000 L). The resulting DO profiles of the refolding reaction show similar trends across scales and these are analyzed using rpHPLC. The desired product quality attributes are then achieved through alternating air and nitrogen sparging triggered by changes in the monitored DO profile. This approach mitigates the impact of differences in equipment or feedstock components between runs, and is directly inline with the key goal of PAT to “actively manage process variability using a knowledge‐based approach.” Biotechnol. Bioeng. 2009; 104: 340–351 © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Process Analytical Technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community because of the potential for continuous real time quality assurance resulting in improved operational control and compliance. In previous publications, we have demonstrated feasibility of applications involving use of high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) for real‐time pooling of process chromatography column. In this article we follow a similar approach to perform lab studies and create a model for a chromatography step of a different modality (hydrophobic interaction chromatography). It is seen that the predictions of the model compare well to actual experimental data, demonstrating the usefulness of the approach across the different modes of chromatography. Also, use of online HPLC when the step is scaled up to pilot scale (a 2294 fold scale‐up from a 3.4 mL column in the lab to a 7.8 L column in the pilot plant) and eventually to manufacturing scale (a 45930 fold scale‐up from a 3.4 mL column in the lab to a 158 L column in the manufacturing plant) is examined. Overall, the results confirm that for the application under consideration, online‐HPLC offers a feasible approach for analysis that can facilitate real‐time decisions for column pooling based on product quality attributes. The observations demonstrate that the proposed analytical scheme allows us to meet two of the key goals that have been outlined for PAT, i.e., “variability is managed by the process” and “product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions”. The application presented here can be extended to other modes of process chromatography and/or HPLC analysis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

11.
Process analytical technology (PAT) has been gaining momentum in the biotech community due to the potential for continuous real‐time quality assurance resulting in improved operational control and compliance. In this two part series, we address PAT as it applies to processes that produce biotech therapeutic products. In the first part, we address evolution of the underlying concepts and applications in biopharmaceutical manufacturing. We also present a literature review of applications in the areas of upstream and downstream processing to illustrate how implementation of PAT can help realize advanced approaches to ensuring product quality in real time. In the second part, we will explore similar applications in the areas of drug product manufacturing, rapid microbiology, and chemometrics as well as evolution of PAT in biotech processing. Biotechnol. Bioeng. 2010; 105: 276–284. Published 2009 Wiley Periodicals, Inc.  相似文献   

12.
Process analytical technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community due to the potential for continuous real time quality assurance resulting in improved operational control and compliance. This paper presents a PAT application for one of the most commonly used unit operation in bioprocessing, namely liquid chromatography. Feasibility of using a commercially available online-high performance liquid chromatography (HPLC) system for real-time pooling of process chromatography column is examined. Further, experimental data from the feasibility studies are modeled and predictions of the model are compared to actual experimental data. It is found that indeed for the application under consideration, the online-HPLC offers a feasible approach for analysis that can facilitate real-time decisions for column pooling based on product quality attributes. It is shown that implementing this analytical scheme allows us to meet two of the key goals that have been outlined for PAT, that is, "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions." Finally, the implications of implementing such a PAT application in a manufacturing environment are discussed. The application presented here can be extended to other modes of process chromatography and/or HPLC analysis.  相似文献   

13.
The process analytical technology (PAT) initiative is now 10 years old. This has resulted in the development of many tools and software packages dedicated to PAT application on pharmaceutical processes. However, most applications are restricted to small molecule drugs, mainly for the relatively simple process steps like drying or tableting where only a limited number of parameters need to be controlled. A big challenge for PAT still lies in applications for biopharmaceuticals and then especially in the cultivation process step, where the quality of a biopharmaceutical product is largely determined. This review gives an overview of the currently available tools for monitoring and controlling the biopharmaceutical cultivation step and of the main challenges for the most common cell platforms (i.e. Escherichia coli, yeast, and mammalian cells) used in biopharmaceutical manufacturing. The real challenge is to understand how intracellular mechanisms (from synthesis to excretion) influence the quality of biopharmaceuticals and how these mechanisms can be monitored and controlled to yield the desired end product quality. Modern “omics” tools and advanced process analyzers have opened up the way for PAT applications for the biopharmaceutical cultivation process step.  相似文献   

14.
Process analytical technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community due to the potential for continuous real-time quality assurance resulting in improved operational control and compliance. Two of the key goals that have been outlined for PAT are "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions". Recently, we have been examining the feasibility of applying different analytical tools for designing PAT applications for bioprocessing. We have previously shown that a commercially available online high performance liquid chromatography (HPLC) system can be used for analysis that can facilitate real-time decisions for column pooling based on product quality attributes (Rathore et al., 2008). In this article we test the feasibility of using a commercially available ultra- performance liquid chromatography (UPLC) system for real-time pooling of process chromatography columns. It is demonstrated that the UPLC system offers a feasible approach and meets the requirements of a PAT application. While the application presented here is of a reversed phase assay, the approach and the hardware can be easily applied to other modes of liquid chromatography.  相似文献   

15.
16.
Advanced control strategies are well established in chemical, pharmaceutical, and food processing industries. Over the past decade, the application of these strategies is being explored for control of bioreactors for manufacturing of biotherapeutics. Most of the industrial bioreactor control strategies apply classical control techniques, with the control system designed for the facility at hand. However, with the recent progress in sensors, machinery, and industrial internet of things, and advancements in deeper understanding of the biological processes, coupled with the requirement of flexible production, the need to develop a robust and advanced process control system that can ease process intensification has emerged. This has further fuelled the development of advanced monitoring approaches, modeling techniques, process analytical technologies, and soft sensors. It is seen that proper application of these concepts can significantly improve bioreactor process performance, productivity, and reproducibility. This review is on the recent advancements in bioreactor control and its related aspects along with the associated challenges. This study also offers an insight into the future prospects for development of control strategies that can be designed for industrial-scale production of biotherapeutic products.  相似文献   

17.
The purpose of this work was to study the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to determine product dry-layer resistance to vapor flow. Product temperature and dry-layer resistance were obtained using MTM software installed on a laboratory freeze-dryer. The MTM resistance values were compared with the resistance values obtained using the “vial method.” The product dry-layer resistances obtained by MTM, assuming fixed temperature difference (ΔT; 2°C), were lower than the actual values, especially when the product temperatures and sublimation rates were low, but with ΔT determined from the pressure rise data, more accurate results were obtained. MTM resistance values were generally lower than the values obtained with the vial method, particularly whenever freeze-drying was conducted under conditions that produced large variations in product temperature (ie, low shelf temperature, low chamber pressure, and without thermal shields). In an experiment designed to magnify temperature heterogeneity, MTM resistance values were much lower than the simple average of the product resistances. However, in experiments where product temperatures were homogenous, good agreement between MTM and “vial-method” resistances was obtained. The reason for the low MTM resistance problem is the fast vapor pressure rise from a few “warm” edge vials or vials with low resistance. With proper use of thermal shields, and the evaluation of ΔT from the data, MTM resistance data are accurate. Thus, the MTM method for determining dry-layer resistance is a useful tool for freeze-drying process analytical technology.  相似文献   

18.
This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperatures, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even, if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (−45°C). Published: February 10, 2006  相似文献   

19.
High throughput approaches to facilitate the development of chromatographic separations have now been adopted widely in the biopharmaceutical industry, but issues of how to reduce the associated analytical burden remain. For example, acquiring experimental data by high level factorial designs in 96 well plates can place a considerable strain upon assay capabilities, generating a bottleneck that limits significantly the speed of process characterization. This article proposes an approach designed to counter this challenge; Strategic Assay Deployment (SAD). In SAD, a set of available analytical methods is investigated to determine which set of techniques is the most appropriate to use and how best to deploy these to reduce the consumption of analytical resources while still enabling accurate and complete process characterization. The approach is demonstrated by investigating how salt concentration and pH affect the binding of green fluorescent protein from Escherichia coli homogenate to an anion exchange resin presented in a 96‐well filter plate format. Compared with the deployment of routinely used analytical methods alone, the application of SAD reduced both the total assay time and total assay material consumption by at least 40% and 5%, respectively. SAD has significant utility in accelerating bioprocess development activities. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

20.
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large‐scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D‐fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design‐of‐experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D‐fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L?1) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L?1, respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D‐fluorescence. The implementation of Raman spectroscopy increases at‐line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337–346, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号