首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
目的:建立小鼠肝细胞体外培养的方法,研究不同浓度胰岛素对肝细胞甘油三酯合成代谢、分解代谢及甘油三酯含量的影响。方法:通过肝脏灌注和胶原酶消化分离小鼠肝细胞,密度梯度离心纯化后,进行体外培养。在0 nmol/L,50 nmol/L,100 nmol/L,200 nmol/L胰岛素存在的情况下培养,通过3H标记的甘油测定细胞内甘油三酯合成速率,使用3H标记的油酸预孵育,加入triacsin C抑制脂肪酸重酯化,追踪掺入3H的甘油三酯分解的速率。采用甘油三酯检测试剂盒,测定不同浓度胰岛素对细胞内甘油三酯含量的影响。结果:成功分离了小鼠原代肝细胞,存活率达90%。50 nmol/L胰岛素对细胞甘油三酯含量及甘油三酯合成分解速率影响较小。100 nmol/L胰岛素可显著增加甘油三酯合成速率,减低分解速率,使细胞内甘油三酯含量增加。200 nmo/L胰岛素反而降低甘油三酯合成速率,细胞内甘油三酯含量少于对照组(0 nmol/L)。结论:本研究成功建立了小鼠原代肝细胞分离培养的方法,使用3H标记物敏感的检测肝细胞内甘油三酯合成分解速率。研究发现,过高浓度的胰岛素反而抑制肝细胞甘油三酯的储积。  相似文献   

2.
《生命科学研究》2013,(6):528-532
通过用葡萄糖培养天府肉鹅(Anser cygnoides)原代肝细胞的试验,探讨葡萄糖对肝细胞脂质合成能力的影响.研究发现:025 mmol/L葡萄糖对肝细胞上清液中谷草转氨酶(aspartate transaminase,AST)、谷丙转氨酶(alanine amiotransferase,ALT)浓度没有显著影响,35 mmol/L葡萄糖影响显著,但AST、ALT浓度均在正常范围内,表明肝细胞功能正常;油红氧染色实验结果表明:葡萄糖处理后显著增加细胞内脂滴集聚和脂质沉积;25、35 mmol/L葡萄糖能显著增加乙酰辅酶A羧化酶α(acetyl-CoA carboxylaseα,ACCα)、脂肪酸合成酶(fatty acid synthetase,FAS)酶活性;5、25、35 mmol/L葡萄糖都能显著增加ACCα、FAS基因mRNA表达量.因此,葡萄糖能通过上调ACCα、FAS基因mRNA表达量及酶活性诱导肝细胞内脂质沉积.  相似文献   

3.
目的研究脂肪细胞在不同分化阶段对肝细胞胰岛素抵抗的影响。方法体外诱导3T3-L1脂肪前体细胞分化,细胞内脂滴增加,逐步分化成脂肪细胞。采用不同分化阶段脂肪细胞(未分化0 d、中期分化4d、接近完全分化8d)与原代肝细胞共培养。Western印迹法检测共培养后肝细胞内胰岛素信号通路的反应性;葡萄糖同位素标记方法检测肝细胞糖原合成能力。结果以未共培养的肝细胞为对照组,共培养后肝细胞内胰岛素受体底物-2酪氨酸磷酸化(Tyr^612)(pIRS-2)水平及Akt磷酸化(Ser^473)(pAkt)水平均显著下调;肝糖原合成能力明显降低;与较成熟脂肪细胞共培养后,肝细胞pIRS-2及pAkt水平与其他分化阶段组共培养比较下调明显,肝糖原合成能力随着脂肪细胞的成熟而明显降低。结论脂肪细胞可能诱导肝细胞发生胰岛素抵抗,肝细胞胰岛素信号通路的阻滞程度与脂肪细胞的分化程度呈正相关。  相似文献   

4.
壬基酚对鲫鱼原代肝细胞增殖和抗氧化功能的影响   总被引:3,自引:0,他引:3  
研究了不同浓度壬基酚对鲫鱼肝细胞增殖和抗氧化系统的影响.结果表明:各试验浓度壬基酚均能抑制鲫鱼肝细胞的增殖,其中高浓度的壬基酚(10-3 mol·L-1)对细胞增殖的抑制作用极其显著,肝细胞形态发生明显改变;壬基酚破坏了鲫鱼肝细胞抗氧化系统的平衡,经壬基酚处理后的肝细胞超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性均受到抑制,而羟自由基的含量升高;壬基酚对原代鲫鱼肝细胞造成氧化损伤,引起培养液中丙二醛(MDA)含量升高.壬基酚诱导的氧化胁迫对原代鲫鱼肝细胞产生了一系列的体外毒性效应.  相似文献   

5.
6.
将人肝细胞生长因子(human hepatocyte growth factor hHGF)全长cDNA重组入pEE14真稳定表达质粒,用lipofectin脂质体将pEE14/rhHGF转染入CHO-K1细胞,蛋氨酸亚氨基代砜(methionine sulfoximine,MSX)筛选出阳性细胞克隆,利用RT-PCR检测rhHGF mRNA的表达通过ELISA法测定rhHGF的蛋白表达,3H掺入法检测培养上清液对大鼠原代培养肝细胞DNA合成的影响,结果表明转染pEE14/rhHGF的细胞可扩增出hHGF特异的396bp RT-PCR片段,培养上清液明显促进大鼠肝细胞DNA的合成,ELISA法测出上清液中,rhHGF的含量在8ug/L以上,显示rhHGF在CHO细胞中以活性形式得到表达。  相似文献   

7.
目的了解1,2-二氯乙烷染毒24h对大鼠肝细胞的损伤及其机理。方法运用显微荧光术测定了大鼠肝细胞内游离钙离子浓度,同时,测定了大鼠肝细胞培养上清液乳酸脱氢酶(LDH)活力作为大鼠肝细胞受损的指标。结果所有剂量组的1,2-二氯乙烷的大鼠肝细胞内游离钙离子浓度与对照组比较差异均无显著性(P〉0.05);LDH活力仅在浓度为5mmol/L的1,2-二氯乙烷染毒组与对照组比较差异也无显著性(P〉0.05);而1,2-二氯乙烷其他染毒组(即浓度为10mmol/L和20mmol/L)与对照组比较差异均有显著性(P〈0.01)。结论较高浓度(10mmol/L和20mmol/L)的1,2-二氯乙烷能损伤大鼠肝细胞,损伤的途径不是通过破坏肝细胞内钙稳态机制。  相似文献   

8.
采用大鼠离体肝细胞原代培养24h,并利用四氯化碳CCl4造成急性肝细胞损伤模型,检定15-甲基-前列腺素F2α(15-Mt-PGF2α)对肝细胞损伤的影响。结果表明:(1)15-Mt-PGF2α可显著降低中毒肝细胞脂质过氧化物水平,抑制肝细胞脂质过氧化,并降低谷丙转氨酶(GPT)和谷草转氨酶(GOT)水平,稳定脂质膜。(2)显著促进中毒肝细胞RNA和DNA的合成。(3)超微结构证实15-Mt-PGF2α能减轻CCl4对肝细胞脂质膜,染色质,线粒体,内质网和核蛋白体的损害。  相似文献   

9.
方茂楠  苏晓荣  卫静  谢利芳  刘涛 《生物磁学》2011,(19):3706-3708
目的:探讨不同浓度外源性胰岛素在不同浓度葡萄糖情况下对β TC-3细胞胰岛素分泌的影响。方法:取对数生长期的13TC3细胞分三组,即低糖组、中糖组、高糖组(葡萄糖浓度分别取1.0mmol/L、3.Ommoi/L、20.Ommol/L)。每组分0、5、10、15、100、500、5000和50000μU/ml胰岛素八个亚组(其中0μU/ml作为对照组)。刺激10分钟后取上清液测C肽。结果:在高糖组中,C肽分泌量无明显差异;在中糖组中,10μU/ml和15μU/ml两组相对对照组C肽分泌量显著增加,50000μU/ml组C肽分泌量则相对对照组出现减少,其余3个亚组无明显改变;在低糖组中,c肽分泌量除5000μU/ml组减少外。其它亚组C肽分泌量无明显差畀。结论:胞外胰岛素在适宜葡萄糖浓度时,对BTC3细胞胰岛素分泌的反馈影响呈剂量依赖关系。  相似文献   

10.
半胱胺对肝细胞代谢油酸过程中ROS生成和ATPase活性的影响   总被引:3,自引:0,他引:3  
目的 研究了半胱胺(CS)对油酸(0A)代谢过程中自由基(ROS)生成和ATP酶(ATPase)活性的影响。方法 通过培养体外小鼠原代肝细胞,添加不同浓度的OA作用24h,通过luminol化学发光法,TBA法、DTNB法、无机磷比色法分别测定ROS、丙二醛(MDA)、谷胱甘肽(GSH)和Na^+-K+-ATP酶活性;选取OA(0,150,250taM/L)三个梯度,添加CS(-,50,100,150,200,250,300,350,400,450,500taM/L),测定相同的指标。结果 添加OA大于150μM/L时,ROS、MDA生成量急剧升高,ATPase活性显著降低(P〈0.05)。添加CS能提高GSH,减少ROS和MDA的生成,提高ATPase的活性,且作用的效果显著(P〈0.05)。但大量添加CS(350-500μM/L)则效果相反。结论 大量添加OA会引起肝细胞氧化应激;添加CS能清除ROS,提高ATPase活性;并伴随OA添加量的增加,CS的最佳需要量也增加。  相似文献   

11.
BackgroundWe previously showed that the fatty liver formations observed in overfed geese are accompanied by the activation of the PI3K-Akt-mTOR pathway and an increase in plasma insulin concentrations. Recent studies have suggested a crucial role for the PI3K-Akt-mTOR pathway in regulating lipid metabolism; therefore, we hypothesized that insulin affects goose hepatocellular lipid metabolism through the PI3K-Akt-mTOR signaling pathway.MethodsGoose primary hepatocytes were isolated and treated with serum-free media supplemented with PI3K-Akt-mTOR pathway inhibitors (LY294002, rapamycin, and NVP-BEZ235, respectively) and 50 or 150 nmol/L insulin.ResultsInsulin induced strong effects on lipid accumulation as well as the mRNA and protein levels of genes involved in lipogenesis, fatty acid oxidation, and VLDL-TG assembly and secretion in primary goose hepatocytes. The stimulatory effect of insulin on lipogenesis was significantly decreased by treatment with PI3K-Akt-mTOR inhibitors. These inhibitors also rescued the insulin-induced down-regulation of fatty acid oxidation and VLDL-TG assembly and secretion.ConclusionThese findings suggest that the stimulatory effect of insulin on lipid deposition is mediated by PI3K-Akt-mTOR regulation of lipogenesis, fatty acid oxidation, and VLDL-TG assembly and secretion in goose hepatocytes.  相似文献   

12.
The objective of the present study was to determine the effects of insulin on amphibian hepatocytes in primary culture. Hepatocytes were isolated from adult bullfrogs by collagenase perfusion and maintained as monolayers in serum-free medium. Cells cultured in the continuous presence of insulin exhibited a relatively constant rate of protein secretion over the first four to five days, whereas controls showed an almost three-fold decrease over the same time period. The decline in secreted proteins was equally represented in most exported proteins, except that serum albumin secretion showed twice as much of a decrease relative to the other proteins. The maintenance of protein secretion by insulin was the result of its effect on protein synthesis. The rate of protein synthesis was measured by the incorporation of (3H)-leucine into protein using culture medium containing 0.5 mM leucine, a condition where the specific radioactivity of leucyl-tRNA was shown to be equal to that of (3H)-leucine in the medium. Cultures maintained with insulin for 60 hours synthesized protein at two to three times the rate found in non-insulin treated controls whose rate of protein synthesis was first detectably decreased after nine hours of culture in the insulin-free medium. Sedimentation profiles of polyribosomes from hepatocytes maintained for 60 hours without insulin showed proportionately fewer ribosomes in large polysomes and more in monosomes and free ribosomal subunits than ribosomes from cells cultured with insulin. This result suggests that the decrease in protein synthesis found in the absence of insulin is due to a defect in initiation. Insulin does not exert its effect by regulating cellular levels of ATP; no change in ATP content was found in cells maintained with or without insulin. The results show that insulin maintains high levels of protein synthesis and secretion in amphibian hepatocytes. The hepatocytes in monlayer culture provide a system to study the molecular mechanisms involved in the translational control of protein synthesis by insulin.  相似文献   

13.
为探寻PI3K/AKT抑制剂渥曼青霉素(Wortmannin,WM)对猪前体脂肪细胞增殖和凋亡均无影响的适宜浓度,文章首先分离并验证了猪原代前体脂肪细胞的分化潜能,然后对不同浓度渥曼青霉素处理11 d的细胞采用Annexin V-FITC/PI双标法检测细胞凋亡,并通过凋亡相关基因的表达以及DNA损伤程度进行验证,同时利用甲烷硫代磺酸盐(Methanethiosulfonate,MTS)检测了细胞的增殖活性。结果表明,100 nmol/L渥曼青霉素对猪前体脂肪细胞的增殖和凋亡均无显著影响,而200 nmol/L的渥曼青霉素对猪原代脂肪细胞的增殖活性虽没有显著影响,但对细胞凋亡有显著促进作用。研究发现,处理后促凋亡因子caspase8和TNFR1表达显著上调,非caspase依赖促凋亡因子GZMA表达无显著性差异,而GZMB表达则显著上调,抗凋亡因子Bcl-x1表达显著上调,cFLIP表达则无显著性差异。100 nmol/L的渥曼青霉素对细胞DNA的损伤不显著。因此,100 nmol/L的渥曼青霉素对猪前体脂肪细胞的增殖和凋亡均无显著影响,是在不影响细胞生长的情况下研究PI3K通路对脂肪细胞分化的较为理想的浓度。  相似文献   

14.
草鱼肝细胞的分离与原代培养   总被引:1,自引:0,他引:1  
目的以草鱼(Ctenopharyngodon idellus)肝细胞为实验对象,在不同条件下进行原代培养,以探讨适合草鱼肝细胞生长的最佳条件及培养方法,用于饲料营养与非营养物质对草鱼肝细胞代谢、损伤作用机制的研究。方法采用温胰蛋白酶消化法和红细胞裂解液分离、纯化肝细胞,MTT法测定细胞增殖率,并测定不同时期培养液上清液中LDH、Alb和BUN的含量,分析肝细胞生长状况。结果采用0.25%浓度的温胰蛋白酶消化法,消化20min,分步收集肝细胞,经台盼蓝染色检测和血球计数板计数,活细胞数≥99%。结论在含10%胎牛血清、10μg/mL胰岛素的M199培养基中,以接种浓度1.7×106cell/mL左右为宜,置于27℃、4.5%CO2浓度的恒温培养箱中,可成功培养草鱼原代肝细胞。  相似文献   

15.
The changes in glycogen content and in its rate of synthesis in two-day-old primary cultures of rat hepatocytes were assessed under various conditions. Hepatocytes cultivated in serum-free and hormone-free medium switch from glycogen degradation to glycogen deposition at 10.3 mM glucose. After pretreatment of the cells with glucocorticoids this threshold was reduced, in the absence or presence of insulin, to 5.4 or 1.2 mM glucose, respectively. The rate of glycogen synthesis in the presence of 10 mM glucose was amplified from 5 nmol x h-1 x mg protein-1 to 20 nmol glucose x h-1 x mg protein-1 after pretreatment with triamcinolone. Glucagon pretreatment also significantly increased the subsequent glycogen synthesis rate. Insulin addition accelerated glycogen synthesis about twofold regardless of the pretreatment. The dose-response relationship between insulin concentration and glycogen synthesis rate showed half-maximal effect at 0.62 +/- 0.22 nM (mean +/- S.D.) insulin. Pretreatment of hepatocytes with glucocorticoids, glucagon, insulin or combinations of these hormones did not significantly change the concentration which gives the half-maximal effect.  相似文献   

16.
The relationship between polyamines and the rate of protein synthesis was investigated in non-proliferating cells: primary cultures of adult rat hepatocytes maintained in serum-free media, and treated with dexamethasone or dexamethasone + insulin. During the second day of culture, polyamine biosynthesis became induced along with the rate of protein synthesis. While the activity of ornithine decarboxylase and the intracellular concentration of putrescine increased only transiently and that of spermine declined, the rise of the protein synthetic rate was paralleled by that of the intracellular spermidine concentration. The polyamine analogue diamino-propanol specifically decreased spermidine content and the protein synthetic rate. The intracellular concentration of spermidine was found subject to tight homeostatic regulation, e.g. not being altered by the addition of up to 1 mM of this polyamine to the culture medium. In contrast, addition of putrescine or spermine led to an increase in their respective intracellular concentrations. These findings indicate that spermidine specifically of the polyamines is involved in protein synthesis in the intact hepatocyte. Moreover, spermidine may mediate part of the trophic action of dexamethasone and insulin upon cultured hepatocytes.  相似文献   

17.
Summary Rat parenchymal hepatocytes isolated with collagenase were cultured as monolayers in Williams medium E supplemented with calf serum. Freshly isolated cells showed very low activities of various liver functions, and they had to be cultured for 6-24 h to allow recovery of these functions. Insulin and dexamethasone greatly increased cell viability in primary culture. After culture for 24 h, these cells showed various liver functions as seen in vivo and responded well to various added hormones and amino acids. The concentrations of amino acids in the medium regulated synthesis of serum proteins and insulin stimulated lipogenesis, which in turn regulated synthesis of lipoproteins. Insulin also stimulated glycogen synthesis and the stimulation was parallel with the number of insulin receptors. Glucagon stimulated glycogenolysis and its stimulation involved the function of the cytoskeleton. Glucagon and dexamethasone induced various enzymes of amino acid catabolism, such as tryptophan oxygenase, tyrosine aminotransferase and serine dehydratase. These inductions were inhibited by insulin or catecholamine. The effect of catecholamine was due to its -adrenergic action. The -action of isoproterenol was low in freshly isolated cells, but increased during culture of the cells. Acquirement of hormonal responses during neonatal development can be studied in this culture system. Mature hepatocytes in culture are usually quiescent, but when insulin and epidermal growth factor were added, DNA synthesis by the cells increased markedly and they showed density-dependent growth. In this culture system, serum could be omitted for 2 days when the dishes were coated with fibronectin without appreciable change of functions, but serum was needed for longer culture of the cells. A factor that increased cell survival was found in serum and in pituitary gland.These results show that hepatocytes in primary culture are a simple and useful system for studies of liver functions in vitro and related works were also reviewed.  相似文献   

18.
Studies have shown linoleate could not only promote cell viability but also affect lipid metabolism in mammals. However, to what degree these effects are mediated by steatosis in goose primary hepatocytes is unknown. In this study, the effect of linoleate on the lipid metabolic homeostasis pathway was determined. We measured the mRNA levels of genes involved in triglyceride synthesis, lipid deposition, β-oxidation, and assembly and secretion of VLDL-TGs in goose (Anser cygnoides) primary hepatocytes. Linoleate significantly increased goose hepatocyte viability, and linoleate at 0.125 mM, 0.25 mM, 0.5 mM and 1.0 mM all showed a significant effect on TG accumulation. However, with increasing linoleate concentrations, the extracellular TG concentration and extracellular VLDL gradually decreased. DGAT1, DGAT2, PPARα, PPARγ, FoxO1, MTP, PLIN and CPT-1 mRNA was detected by real-time PCR. With increasing linoleate concentrations, the changes in DGAT1, DGAT2, PPARα and CPT-1 gene expression, which regulates hepatic TG synthesis and fatty acid oxidation, first increased and then decreased. Additionally, FoxO1 and MTP gene expression was reduced with increasing linoleate concentrations, and the change in PLIN gene expression was increased at all concentrations, similar to the regulation of intracellular TG accumulation. In conclusion, linoleate regulated TG accumulation and increased hepatocyte viability. The data suggest that linoleate does promote goose hepatocyte viability and steatosis, which may up-regulate TG synthesis-relevant gene expression, suppress assembly and secretion of VLDL-TGs, and increase fatty acid oxidation properly to function of goose primary hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号