首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
A shortened, recombinant protein comprising residues 109-666 of the tailspike endorhamnosidase of Salmonella phage P22 was purified from Escherichia coli and crystallized. Like the full-length tailspike, the protein lacking the amino-terminal head-binding domain is an SDS-resistant, thermostable trimer. Its fluorescence and circular dichroism spectra indicate native structure. Oligosaccharide binding and endoglycosidase activities of both proteins are identical. A number of tailspike folding mutants have been obtained previously in a genetic approach to protein folding. Two temperature-sensitive-folding (tsf) mutations and the four known global second-site suppressor (su) mutations were introduced into the shortened protein and found to reduce or increase folding yields at high temperature. The mutational effects on folding yields and subunit folding kinetics parallel those observed with the full-length protein. They mirror the in vivo phenotypes and are consistent with the substitutions altering the stability of thermolabile folding intermediates. Because full-length and shortened tailspikes aggregate upon thermal denaturation, and their denaturant-induced unfolding displays hysteresis, kinetics of thermal unfolding were measured to assess the stability of the native proteins. Unfolding of the shortened wild-type protein in the presence of 2% SDS at 71 degrees C occurs at a rate of 9.2 x 10(-4) s(-1). It reflects the second kinetic phase of unfolding of the full-length protein. All six mutations were found to affect the thermal stability of the native protein. Both tsf mutations accelerate thermal unfolding about 10-fold. Two of the su mutations retard thermal unfolding up to 5-fold, while the remaining two mutations accelerate unfolding up to 5-fold. The mutational effects can be rationalized on the background of the recently determined crystal structure of the protein.  相似文献   

2.
Mechanism of phage P22 tailspike protein folding mutations.   总被引:5,自引:4,他引:1       下载免费PDF全文
Temperature-sensitive folding (tsf) and global-tsf-suppressor (su) point mutations affect the folding yields of the trimeric, thermostable phage P22 tailspike endorhamnosidase at elevated temperature, both in vivo and in vitro, but they have little effect on function and stability of the native folded protein. To delineate the mechanism by which these mutations modify the partitioning between productive folding and off-pathway aggregation, the kinetics of refolding after dilution from acid-urea solutions and the thermal stability of folding intermediates were analyzed. The study included five tsf mutations of varying severity, the two known su mutations, and four tsf/su double mutants. At low temperature (10 degrees C), subunit-folding rates, measured as an increase in fluorescence, were similar for wild-type and mutants. At 25 degrees C, however, tsf mutations reduced the rate of subunit folding. The su mutations increased this rate, when present in the tsf-mutant background, but had no effect in the wild-type background. Conversely, tsf mutations accelerated, and su mutations retarded the irreversible off-pathway reaction, as revealed by temperature down-shifts after varied times during refolding at high temperature (40 degrees C). The kinetic results are consistent with tsf mutations destabilizing and su mutations stabilizing an essential subunit folding intermediate. In accordance with this interpretation, tsf mutations decreased, and su mutations increased the temperature resistance of folding intermediates, as disclosed by temperature up-shifts during refolding at 25 degrees C. The stabilizing and destabilizing effects were most pronounced early during refolding. However, they were not limited to subunit-folding intermediates and were also observable during thermal unfolding of the native protein.  相似文献   

3.
A N Stroup  L M Gierasch 《Biochemistry》1990,29(42):9765-9771
A family of mutants of the P22 bacteriophage tailspike protein has been characterized as temperature sensitive for folding (tsf) by King and co-workers [King, J. (1986) Bio/Technology 4, 297-303]. There is substantial evidence that the tsf mutations alter the folding pathway but not the stability of the final folded protein. Several point mutations are known to cause the tsf phenotype; most of these occur in regions of the tailspike sequence likely to take up reverse turns. Hence, it has been hypothesized that the correct folding of the P22 tailspike protein requires formation of turns and that the mutations causing tsf phenotypes interfere at this critical stage. We have tested this hypothesis by study of isolated peptides corresponding to a region of the P22 tailspike harboring a tsf mutation. Comparison of the tendencies of wild-type and tsf sequences to adopt turn conformations was achieved by the synthesis of peptides with flanking cysteine residues and the use of a thiol-disulfide exchange assay. We find that the wild-type sequence, either as a decapeptide (Ac-CVKFPGIETC-CONH2) or as a dodecapeptide (Ac-CYVKFPGIETLC-CONH2), has a 3-5-fold greater tendency for its termini to approach closely enough to form the intramolecular disulfide than do the peptide sequences corresponding to the tsf mutant sequences, which have a Gly----Arg substitution (Ac-CVKFPRIETC-CONH2 or Ac-CYVKFPRIETLC-CONH2). A peptide with a D-Arg substituted for the Gly has a slightly higher turn propensity than does the wild type. Together with data from nuclear magnetic resonance analysis of the oxidized peptides, this suggests that a type II beta turn is favored by the wild-type sequence. Our results on isolated peptides from the P22 tailspike protein support the model for its folding that includes reverse turn formation as a critical step.  相似文献   

4.
Several temperature-sensitive folding (tsf) mutants of the tailspike protein from bacteriophage P22 have been found to fold with lower efficiency than the wild-type sequence, even at lowered temperatures. Previous refolding studies initiated from the unfolded monomer have indicated that the tsf mutations decrease the rate of structured monomer formation. We demonstrate that pressure treatment of the tailspike aggregates provides a useful tool to explore the effects of tsf mutants on the assembly pathway of the P22 tailspike trimer. The effects of pressure on two different tsf mutants, G244R and E196K, were explored. Pressure treatment of both G244R and E196K aggregates produced a folded trimer. E196K forms almost no native trimer in in vitro refolding experiments, yet it forms a trimer following pressure in a manner similar to the native tailspike protein. In contrast, trimer formation from pressure-treated G244R aggregates was not rapid, despite the presence of a G244R dimer after pressure treatment. The center-of-mass shifts of the fluorescence spectra under pressure are nearly identical for both tsf aggregates, indicating that pressure generates similar intermediates. Taken together, these results suggest that E196K has a primary defect in formation of the beta-helix during monomer collapse, while G244R is primarily an assembly defect.  相似文献   

5.
Temperature-sensitive folding (tsf) mutations in the gene for the thermostable P22 tailspike interfere with the polypeptide chain folding and association pathway at restrictive temperature without altering the thermostability of the protein once correctly folded and assembled at permissive temperature. Though the native proteins matured at permissive temperature are biologically active, many of them display alterations in electrophoretic mobility. The native forms of 15 of these tsf mutant proteins have been purified and characterized. The purified proteins differed in electrophoretic mobility and isoelectric point from wild type but did not show evidence of major conformational alterations. The results suggest that the electrophoretic variations conferred by the 15 tsf amino acid substitutions are due to changes in the net charge at solvent-accessible sites in the native form of the mutant protein. During the maturation of the chains at restrictive temperature, these sites influence the conformation of intermediates in chain folding and association. The amino acid sequences at these sites resemble those found at turns in polypeptide chains. The isolation of tsf mutations requires that the mature structure of the tailspike accommodates the mutant amino acid substitution without loss of function. The solvent-accessible sites are probably at the surface of this structural protein. This would explain how bulky mutant substitutions, such as arginines for glycines, are accommodated in the native tailspike structure. Such sites, stabilizing intermediates in the folding pathway and located on the surface of the mature protein, probably represent a general class of conformational substrates for tsf mutations.  相似文献   

6.
The trimeric bacteriophage P22 tailspike adhesin exhibits a domain in which three extended strands intertwine, forming a single turn of a triple beta-helix. This domain contains a single hydrophobic core composed of residues contributed by each of the three sister polypeptide chains. The triple beta-helix functions as a molecular clamp, increasing the stability of this elongated structural protein. During folding of the tailspike protein, the last precursor before the native state is a partially folded trimeric intermediate called the protrimer. The transition from the protrimer to the native state results in a structure that is resistant to denaturation by heat, chemical denaturants, and proteases. Random mutations were made in the region encoding residues 540-548, where the sister chains begin to wrap around each other. From a set of 26 unique single amino acid substitutions, we characterized mutations at G546, N547, and I548 that retarded or blocked the protrimer to native trimer transition. In contrast, many non-conservative substitutions were tolerated at residues 540-544. Sucrose gradient analysis showed that protrimer-like mutants had reduced sedimentation, 8.0 S to 8.3 S versus 9.3 S for the native trimer. Mutants affected in the protrimer to native trimer transition were also destabilized in their native state. These data suggest that the folding of the triple beta-helix domain drives transition of the protrimer to the native state and is accompanied by a major rearrangement of polypeptide chains.  相似文献   

7.
Temperature-sensitive folding mutations (tsf) of the thermostable P22 tailspike protein prevent the mutant polypeptide chain from reaching the native state at the higher end of the temperature range of bacterial growth (37-42 degrees C). At lower temperatures the mutant polypeptide chains fold and associate into native proteins. The melting temperatures of the purified native forms of seven different tsf mutant proteins have been determined by differential scanning calorimetry. Under conditions in which the wild type protein had a melting temperature of 88.4 degrees C, the melting temperatures of the mutant proteins were all above 82 degrees C, more than 40 degrees C higher than the temperature for expression of the folding defect. Because the folding defects were observed in vivo, the thermostability of the native protein was also examined with infected cells. Once matured at 28 degrees C, intracellular tsf mutant tailspikes remained native when the cells were transferred to 42 degrees C, a temperature that prevents newly synthesized tsf chains from folding correctly. These results confirm that the failure of tsf polypeptide chains to reach their native state is not due to a lowered stability of the native state. Such mutants differ from the class of ts mutations which render the native state thermolabile. The intracellular folding defects must reflect decreased stabilities of folding intermediates or alteration in the off-pathway steps leading to aggregation and inclusion body formation. These results indicate that the stability of a native protein within the cells is not sufficient to insure the successful folding of the newly synthesized chains into the native state.  相似文献   

8.
Specific amino acid substitutions confer a temperature-sensitive-folding (tsf) phenotype to bacteriophage P22 coat protein. Additional amino acid substitutions, called suppressor substitutions (su), relieve the tsf phenotype. These su substitutions are proposed to increase the efficiency of procapsid assembly, favoring correct folding over improper aggregation. Our recent studies indicate that the molecular chaperones GroEL/ES are more effectively recruited in vivo for the folding of tsf:su coat proteins than their tsf parents. Here, the tsf:su coat proteins are studied with in vitro equilibrium and kinetic techniques to establish a molecular basis for suppression. The tsf:su coat proteins were monomeric, as determined by velocity sedimentation analytical ultracentrifugation. The stability of the tsf:su coat proteins was ascertained by equilibrium urea titrations, which were best described by a three-state folding model, N <--> I <--> U. The tsf:su coat proteins either had stabilized native or intermediate states as compared with their tsf coat protein parents. The kinetics of the I <--> U transition showed a decrease in the rate of unfolding and a small increase in the rate of refolding, thereby increasing the population of the intermediate state. The increased intermediate population may be the reason the tsf:su coat proteins are aggregation-prone and likely enhances GroEL-ES interactions. The N --> I unfolding rate was slower for the tsf:su proteins than their tsf coat parents, resulting in an increase in the native state population, which may allow more competent interactions with scaffolding protein, an assembly chaperone. Thus, the suppressor substitution likely improves folding in vivo through increased efficiency of coat protein-chaperone interactions.  相似文献   

9.
Understanding the nature of protein grammar is critical because amino acid substitutions in some proteins cause misfolding and aggregation of the mutant protein resulting in a disease state. Amino acid substitutions in phage P22 coat protein, known as tsf (temperature-sensitive folding) mutations, cause folding defects that result in aggregation at high temperatures. We have isolated global su (suppressor) amino acid substitutions that alleviate the tsf phenotype in coat protein (Aramli, L. A., and Teschke, C. M. (1999) J. Biol. Chem. 274, 22217-22224). Unexpectedly, we found that a global su amino acid substitution in tsf coat proteins made aggregation worse and that the tsf phenotype was suppressed by increasing the rate of subunit assembly, thereby decreasing the concentration of aggregation-prone folding intermediates.  相似文献   

10.
There is growing interest in understanding how the cellular environment affects protein folding mechanisms, but most spectroscopic methods for monitoring folding in vitro are unsuitable for experiments in vivo or in other complex mixtures. Monoclonal antibody binding represents a sensitive structural probe that can be detected against the background of other cellular components. A panel of antibodies has been raised against Salmonella typhimurium phage P22 tailspike. In this report, nine alpha-tailspike antibody binding epitopes were characterized by measuring the binding of these monoclonal antibodies to tailspike variants bearing surface point mutations. These results reveal that the antibody epitopes are distributed throughout the tailspike structure, with several clustered in the central parallel beta-helix domain. The ability of each antibody to distinguish between tailspike conformational states was assessed by measuring antibody binding to tailspike in vitro refolding intermediates. Interestingly, the binding of all but one of the nine antibodies is sensitive to the tailspike conformational state. Whereas several antibodies bind preferentially to the tailspike native structure, the structural features that comprise the binding epitopes form with different rates. In addition, two antibodies preferentially recognize early refolding intermediates. Combined with the epitope mapping, these results indicate portions of the beta-helix form early during refolding, perhaps serving as a scaffold for the formation of additional structure. Finally, three of the antibodies show enhanced binding to non-native, potentially aggregation-prone tailspike conformations. The refolding results indicate these non-native conformations form early during the refolding reaction, long before the appearance of native tailspike.  相似文献   

11.
Mutations in the tailspike gene (gene 9) of Salmonella typhimurium phage P22 have been used to identify amino acid interactions during the folding of a polypeptide chain. Since temperature-sensitive folding (tsf) mutations cause folding defects in the P22 tailspike polypeptide chain, it is likely that mutants derived from these and correcting the original tsf defects (second-site intragenic suppressors) identify interactions during the folding pathway. We report the isolation and identification of second-site revertants to tsf mutants.  相似文献   

12.
The P22 tailspike adhesin is an elongated thermostable trimer resistant to protease digestion and to denaturation in sodium dodecyl sulfate. Monomeric, dimeric, and protrimeric folding and assembly intermediates lack this stability and are thermolabile. In the native trimer, three right-handed parallel beta-helices (residues 143-540), pack side-by-side around the three-fold axis. After residue 540, these single chain beta-helices terminate and residues 541-567 of the three polypeptide chains wrap around each other to form a three-stranded interdigitated beta-helix. Three mutants located in this region -- G546D, R563Q, and A575T -- blocked formation of native tailspike trimers, and accumulated soluble forms of the mutant polypeptide chains within cells. The substitutions R563Q and A575T appeared to prevent stable association of partially folded monomers. G546D, in the interdigitated region of the chain, blocked tailspike folding at the transition from the partially-folded protrimer to the native trimer. The protrimer-like species accumulating in the G546D mutant melted out at 42 degrees C and was trypsin and SDS sensitive. The G546D defect was not corrected by introduction of global suppressor mutations, which correct kinetic defects in beta-helix folding. The simplest interpretation of these results is that the very high thermostability (T(m) = 88 degrees C), protease and detergent resistance of the native tailspike acquired in the protrimer-to-trimer transition, depends on the formation of the three-stranded interdigitated region. This interdigitated beta-helix appears to function as a molecular clamp insuring thermostable subunit association in the native trimer.  相似文献   

13.
In the assembly pathway of the trimeric P22 tailspike protein, the protein conformation critical for the partitioning between productive folding and off-pathway aggregation is a monomeric folding intermediate. The central domain of tailspike, a large right-handed parallel beta-helix, is essentially structured in this species. We used the isolated beta-helix domain (Bhx), expressed with a hexahistidine tag, to investigate the mechanism of aggregation without the two terminal domains present in the complete protein. Although Bhx has been shown to fold reversibly at low ionic strength conditions, increased ionic strength induced aggregation with a maximum at urea concentrations corresponding to the midpoint of urea-induced folding transitions. According to size exclusion chromatography, aggregation appeared to proceed via a linear polymerization mechanism. Circular dichroism indicated a secondary structure content of the aggregates similar to that of the native state, but at the same time their tryptophan fluorescence was largely quenched. Microscopic analysis of the aggregates revealed a variety of morphologies; among others, fibrils with fine structure were observed that exhibited bright green birefringence if viewed under cross-polarized light after staining with Congo red. These observations, together with the effects of folding mutations on the aggregation process, indicate the involvement of a partially structured intermediate distinct from both unfolded and native Bhx.  相似文献   

14.
Temperature-sensitive folding (tsf) mutations in gene 9 of bacteriophage P22 interfere with the folding and association of the tailspike polypeptide chain at restrictive temperature. We report here the location and amino acid substitutions for 24 independent tsf mutants. The distribution of these and previously identified mutations is distinctly non-random; all of the 32 unambiguous sites of tsf mutations are located in the central 350 residues of the 666 residue tailspike polypeptide chain. No ts mutation has been found among the N-terminal 140 amino acids, and none among the C-terminal 170 amino acids. Since the physiological defect in these mutants is the destabilization of an early intermediate in the folding pathway, the localization of the mutants suggests that the central region of the chain is critical for formation or stabilization of this early intermediate. The majority of amino acids that served as sites for the tsf mutations were hydrophilic residues. Sixty percent of the replacements of these residues represented charge changes. This probably reflects the selection for mutant sites at the mature protein surface where the substitutions can be best tolerated without interfering with function. None of the sites of tsf mutations were at aromatic residues, and only one proline site was found. Substitutions at these residues may cause lethal folding defects which are not recovered as tsf mutants. The local sequences at tsf sites resemble those reported for turns. Structural studies identify beta-sheet as the dominant secondary structure. These mutations may disrupt the formation of conformational features of beta-sheets which are repeated, such as turns, associations between pairs of strands, or sheet/sheet packing interactions. Such a model accounts for the occurrence of tsf mutations with similar defective phenotypes at multiple positions along the chain.  相似文献   

15.
B Fane  J King 《Genetics》1987,117(2):157-171
Amber mutations have been isolated and mapped to more than 60 sites in gene 9 of P22 encoding the thermostable phage tailspike protein. Gene 9 is the locus of over 30 sites of temperature sensitive folding (tsf) mutations, which affect intermediates in the chain folding and subunit association pathway. The phenotypes of the amber missense proteins produced on tRNA suppressor hosts inserting serine, glutamine, tryosine and leucine have been determined at different temperatures. Thirty-three of the sites are tolerant, producing functional proteins with any of the four amino acids inserted at the sites, independent of temperature. Tolerant sites are concentrated at the N-terminal end of the protein indicating that this region is not critical for conformation or function. Sixteen of the sites yield temperature sensitive missense proteins on at least one nonsense suppressing host. Most of the sites with ts phenotypes map to the central region of the gene which is also the region where most of the tsf mutations map. Mutations at 15 of the sites have a lethal phenotype on at least one tRNA suppressor host. For nine out of ten sites tested with at least one lethal phenotype, the primary defect was in the folding or subunit association of the missense polypeptide chain. This analysis of the tailspike missense proteins distinguishes three classes of amino acid sites in the polypeptide chain; residues whose side chains contribute little to folding, subunit assembly or function; residues critical for maintaining the folding and subunit assembly pathway at the high end of the temperature range of phage growth; and residues critical over the entire temperature range of growth.  相似文献   

16.
G J Thomas  R Becka  D Sargent  M H Yu  J King 《Biochemistry》1990,29(17):4181-4187
The thermostable tailspike endorhamnosidase of Salmonella phage P22 provides a model system for comparing the role of amino acid sequences in determining the intracellular folding pathway with their role in stabilizing the mature structural protein. Complete Raman band assignments are given here for the native form of the tailspike trimer in aqueous solution. Once correctly folded and assembled, the wild-type and two well-characterized mutant proteins, tsfIle258----Leu and tsfGly323----Asp, exhibit the same secondary structure in solution, consisting predominantly of beta-strand (56 +/- 5%) and turns (17 +/- 2%). Raman bands that are sensitive indicators of hydrogen-bonding interactions of tyrosine (phenolic OH) and tryptophan (indole NH) are unchanged between 30 and 80 degrees C in both wild type and tsf mutants. Similarly, Raman bands that are sensitive to changes in the hydrophobic environment of nonpolar side chains exhibit no significant temperature dependence in wild type and tsf mutants. In contrast, these conformational features are greatly altered by chemical denaturation of the tailspike with lithium halide and guanidine hydrochloride. In the chemically denatured tailspike, the beta-strand structure is substantially converted to irregular or "random coil" conformation. These findings confirm conclusions from physiological studies that the three-dimensional structures of the tsf mutants, once stabilized at permissive temperatures, are equivalent to the native structure of the wild type, and this structure is maintained at temperatures far above those that block the folding of the chain into the final native conformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Benton CB  King J  Clark PL 《Biochemistry》2002,41(16):5093-5103
P22 tailspike is a homotrimeric, thermostable adhesin that recognizes the O-antigen lipopolysaccharide of Salmonella typhimurium. The 70 kDa subunits include long beta-helix domains. After residue 540, the polypeptide chains change their path and wrap around one another, with extensive interchain contacts. Formation of this interdigitated domain intimately couples the chain folding and assembly mechanisms. The earliest detectable trimeric intermediate in the tailspike folding and assembly pathway is the protrimer, suspected to be a precursor of the native trimer structure. We have directly analyzed the kinetics of in vitro protrimer formation and disappearance for wild type and mutant tailspike proteins. The results confirm that the protrimer intermediate is an on-pathway intermediate for tailspike folding. Protrimer was originally resolved during tailspike folding because its migration through nondenaturing polyacrylamide gels was significantly retarded with respect to the migration of the native tailspike trimer. By comparing protein mobility versus acrylamide concentration, we find that the retarded mobility of the protrimer is due exclusively to a larger overall size than the native trimer, rather than an altered net surface charge. Experiments with mutant tailspike proteins indicate that the conformation difference between protrimer and native tailspike trimer is localized toward the C-termini of the tailspike polypeptide chains. These results suggest that the transformation of the protrimer to the native tailspike trimer represents the C-terminal interdigitation of the three polypeptide chains. This late step may confer the detergent-resistance, protease-resistance, and thermostability of the native trimer.  相似文献   

18.
B. Fane  J. King 《Genetics》1991,127(2):263-277
Within the amino acid sequences of polypeptide chains little is known of the distribution of sites and sequences critical for directing chain folding and assembly. Temperature-sensitive folding (tsf) mutations identifying such sites have been previously isolated and characterized in gene 9 of phage P22 encoding the tailspike endorhamnosidase. We report here the isolation of a set of second-site conformational suppressors which alleviate the defect in such folding mutants. The suppressors were selected for their ability to correct the defects of missense tailspike polypeptide chains, generated by growth of gene 9 amber mutants on Salmonella host strains inserting either tyrosine, serine, glutamine or leucine at the nonsense codons. Second-site suppressors were recovered for 13 of 22 starting sites. The suppressors of defects at six sites mapped within gene 9. (Suppressors for seven other sites were extragenic and distant from gene 9.) The missense polypeptide chains generated from all six suppressible sites displayed ts phenotypes. Temperature-sensitive alleles were isolated at these amber sites by pseudoreversion. The intragenic suppressors restored growth at the restrictive temperature of these presumptive tsf alleles. Characterization of protein maturation in cells infected with mutant phages carrying the intragenic suppressors indicates that the suppression is acting at the level of polypeptide chain folding and assembly.  相似文献   

19.
Single amino acid substitutions in a protein can cause misfolding and aggregation to occur. Protein misfolding can be rescued by second-site amino acid substitutions called suppressor substitutions (su), commonly through stabilizing the native state of the protein or by increasing the rate of folding. Here we report evidence that su substitutions that rescue bacteriophage P22 temperature-sensitive-folding (tsf) coat protein variants function in a novel way. The ability of tsf:su coat proteins to fold and assemble under a variety of cellular conditions was determined by monitoring levels of phage production. The tsf:su coat proteins were found to more effectively utilize P22 scaffolding protein, an assembly chaperone, as compared with their tsf parents. Phage-infected cells were radioactively labelled to quantify the associations between coat protein variants and folding and assembly chaperones. Phage carrying the tsf:su coat proteins induced more GroEL and GroES, and increased formation of protein:chaperone complexes as compared with their tsf parents. We propose that the su substitutions result in coat proteins that are more assembly competent in vivo because of a chaperone-driven kinetic partitioning between aggregation-prone intermediates and the final assembled state. Through more proficient use of this chaperone network, the su substitutions exhibit a novel means of suppression of a folding defect.  相似文献   

20.
In this study, a new beta-helical model is proposed that explains the species barrier and strain variation in transmissible spongiform encephalopathies. The left-handed beta-helix serves as a structural model that can explain the seeded growth characteristics of beta-sheet structure in PrP(Sc) fibrils. Molecular dynamics simulations demonstrate that the left-handed beta-helix is structurally more stable than the right-handed beta-helix, with a higher beta-sheet content during the simulation and a better distributed network of inter-strand backbone-backbone hydrogen bonds between parallel beta-strands of different rungs. Multiple sequence alignments and homology modelling of prion sequences with different rungs of left-handed beta-helices illustrate that the PrP region with the highest beta-helical propensity (residues 105-143) can fold in just two rungs of a left-handed beta-helix. Even if no other flanking sequence participates in the beta-helix, the two rungs of a beta-helix can give the growing fibril enough elevation to accommodate the rest of the PrP protein in a tight packing at the periphery of a trimeric beta-helix. The folding of beta-helices is driven by backbone-backbone hydrogen bonding and stacking of side-chains in adjacent rungs. The sequence and structure of the last rung at the fibril end with unprotected beta-sheet edges selects the sequence of a complementary rung and dictates the folding of the new rung with optimal backbone hydrogen bonding and side-chain stacking. An important side-chain stack that facilitates the beta-helical folding is between methionine residues 109 and 129, which explains their importance in the species barrier of prions. Because the PrP sequence is not evolutionarily optimised to fold in a beta-helix, and because the beta-helical fold shows very little sequence preference, alternative alignments are possible that result in a different rung able to select for an alternative complementary rung. A different top rung results in a new strain with different growth characteristics. Hence, in the present model, sequence variation and alternative alignments clarify the basis of the species barrier and strain specificity in PrP-based diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号