首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Na+-K+ co-transporter HKT1, first isolated from wheat, mediates high-affinity K+ uptake. The function of HKT1 in plants, however, remains to be elucidated, and the isolation of HKT1 homologs from Arabidopsis would further studies of the roles of HKT1 genes in plants. We report here the isolation of a cDNA homologous to HKT1 from Arabidopsis (AtHKT1) and the characterization of its mode of ion transport in heterologous systems. The deduced amino acid sequence of AtHKT1 is 41% identical to that of HKT1, and the hydropathy profiles are very similar. AtHKT1 is expressed in roots and, to a lesser extent, in other tissues. Interestingly, we found that the ion transport properties of AtHKT1 are significantly different from the wheat counterpart. As detected by electrophysiological measurements, AtHKT1 functioned as a selective Na+ uptake transporter in Xenopus laevis oocytes, and the presence of external K+ did not affect the AtHKT1-mediated ion conductance (unlike that of HKT1). When expressed in Saccharomyces cerevisiae, AtHKT1 inhibited growth of the yeast in a medium containing high levels of Na+, which correlates to the large inward Na+ currents found in the oocytes. Furthermore, in contrast to HKT1, AtHKT1 did not complement the growth of yeast cells deficient in K+ uptake when cultured in K+-limiting medium. However, expression of AtHKT1 did rescue Escherichia coli mutants carrying deletions in K+ transporters. The rescue was associated with a less than 2-fold stimulation of K+ uptake into K+-depleted cells. These data demonstrate that AtHKT1 differs in its transport properties from the wheat HKT1, and that AtHKT1 can mediate Na+ and, to a small degree, K+ transport in heterologous expression systems.  相似文献   

2.
HKT-type transporters appear to play key roles in Na(+) accumulation and salt sensitivity in plants. In Arabidopsis HKT1;1 has been proposed to influx Na(+) into roots, recirculate Na(+) in the phloem and control root : shoot allocation of Na(+). We tested these hypotheses using (22)Na(+) flux measurements and ion accumulation assays in an hkt1;1 mutant and demonstrated that AtHKT1;1 contributes to the control of both root accumulation of Na(+) and retrieval of Na(+) from the xylem, but is not involved in root influx or recirculation in the phloem. Mathematical modelling indicated that the effects of the hkt1;1 mutation on root accumulation and xylem retrieval were independent. Although AtHKT1;1 has been implicated in regulation of K(+) transport and the hkt1;1 mutant showed altered net K(+) accumulation, (86)Rb(+) uptake was unaffected by the hkt1;1 mutation. The hkt1;1 mutation has been shown previously to rescue growth of the sos1 mutant on low K(+); however, HKT1;1 knockout did not alter K(+) or (86)Rb(+) accumulation in sos1.  相似文献   

3.
Members of class II of the HKT transporters, which have thus far only been isolated from grasses, were found to mediate Na(+)-K(+) cotransport and at high Na(+) concentrations preferred Na(+)-selective transport, depending on the ionic conditions. But the physiological functions of this K(+)-transporting class II of HKT transporters remain unknown in plants, with the exception of the unique class II Na(+) transporter OsHKT2;1. The genetically tractable rice (Oryza sativa; background Nipponbare) possesses two predicted K(+)-transporting class II HKT transporter genes, OsHKT2;3 and OsHKT2;4. In this study, we have characterized the ion selectivity of the class II rice HKT transporter OsHKT2;4 in yeast and Xenopus laevis oocytes. OsHKT2;4 rescued the growth defect of a K(+) uptake-deficient yeast mutant. Green fluorescent protein-OsHKT2;4 is targeted to the plasma membrane in transgenic plant cells. OsHKT2;4-expressing oocytes exhibited strong K(+) permeability. Interestingly, however, K(+) influx in OsHKT2;4-expressing oocytes did not require stimulation by extracellular Na(+), in contrast to other class II HKT transporters. Furthermore, OsHKT2;4-mediated currents exhibited permeabilities to both Mg(2+) and Ca(2+) in the absence of competing K(+) ions. Comparative analyses of Ca(2+) and Mg(2+) permeabilities in several HKT transporters, including Arabidopsis thaliana HKT1;1 (AtHKT1;1), Triticum aestivum HKT2;1 (TaHKT2;1), OsHKT2;1, OsHKT2;2, and OsHKT2;4, revealed that only OsHKT2;4 and to a lesser degree TaHKT2;1 mediate Mg(2+) transport. Interestingly, cation competition analyses demonstrate that the selectivity of both of these class II HKT transporters for K(+) is dominant over divalent cations, suggesting that Mg(2+) and Ca(2+) transport via OsHKT2;4 may be small and would depend on competing K(+) concentrations in plants.  相似文献   

4.
5.
Plants have multiple potassium (K(+)) uptake and efflux mechanisms that are expressed throughout plant tissues to fulfill different physiological functions. Several different classes of K(+) channels and carriers have been identified at the molecular level in plants. K(+) transporters of the HKT1 superfamily have been cloned from wheat (Triticum aestivum), Arabidopsis, and Eucalyptus camaldulensis. The functional characteristics as well as the primary structure of these transporters are diverse with orthologues found in bacterial and fungal genomes. In this report, we provide a detailed characterization of the functional characteristics, as expressed in Xenopus laevis oocytes, of two cDNAs isolated from E. camaldulensis that encode proteins belonging to the HKT1 superfamily of K(+)/Na(+) transporters. The transport of K(+) in EcHKT-expressing oocytes is enhanced by Na(+), but K(+) was also transported in the absence of Na(+). Na(+) is transported in the absence of K(+) as has been demonstrated for HKT1 and AtHKT1. Overall, the E. camaldulensis transporters show some similarities and differences in ionic selectivity to HKT1 and AtHKT1. One striking difference between HKT1 and EcHKT is the sensitivity to changes in the external osmolarity of the solution. Hypotonic solutions increased EcHKT induced currents in oocytes by 100% as compared with no increased current in HKT1 expressing or uninjected oocytes. These osmotically sensitive currents were not enhanced by voltage and may mediate water flux. The physiological function of these osmotically induced increases in currents may be related to the ecological niches that E. camaldulensis inhabits, which are periodically flooded. Therefore, the osmosensing function of EcHKT may provide this species with a competitive advantage in maintaining K(+) homeostasis under certain conditions.  相似文献   

6.
Potassium is an important macronutrient required for plant growth, whereas sodium (Na+) can be toxic at high concentrations. The wheat K+ uptake transporter HKT1 has been shown to function in yeast and oocytes as a high affinity K+-Na+ cotransporter, and as a low affinity Na+ transporter at high external Na+. A previous study showed that point mutations in HKT1, which confer enhancement of Na+ tolerance to yeast, can be isolated by genetic selection. Here we report on the isolation of mutations in new domains of HKT1 showing further large increases in Na+ tolerance. By selection in a Na+ ATPase deletion mutant of yeast that shows a high Na+ sensitivity, new HKT1 mutants at positions Gln-270 and Asn-365 were isolated. Several independent mutations were isolated at the Asn-365 site. N365S dramatically increased Na+ tolerance in yeast compared with all other HKT1 mutants. Cation uptake experiments in yeast and biophysical characterization in Xenopus oocytes showed that the mechanisms underlying the Na+ tolerance conferred by the N365S mutant were: reduced inhibition of high affinity Rb+ (K+) uptake at high Na+ concentrations, reduced low affinity Na+ uptake, and reduced Na+ to K+ content ratios in yeast. In addition, the N365S mutant could be clearly distinguished from less Na+-tolerant HKT1 mutants by a markedly decreased relative permeability for Na+ at high Na+ concentrations. The new mutations contribute to the identification of new functional domains and an amino acid in a loop domain that is involved in cation specificity of a plant high affinity K+ transporter and will be valuable for molecular analyses of Na+ transport mechanisms and stress in plants.  相似文献   

7.
Two allelic recessive mutations of Arabidopsis, sas2-1 and sas2-2, were identified as inducing sodium overaccumulation in shoots. The sas2 locus was found (by positional cloning) to correspond to the AtHKT1 gene. Expression in Xenopus oocytes revealed that the sas2-1 mutation did not affect the ionic selectivity of the transporter but strongly reduced the macro scopic (whole oocyte current) transport activity. In Arabidopsis, expression of AtHKT1 was shown to be restricted to the phloem tissues in all organs. The sas2-1 mutation strongly decreased Na(+) concentration in the phloem sap. It led to Na(+) overaccumulation in every aerial organ (except the stem), but to Na(+) underaccumulation in roots. The sas2 plants displayed increased sensitivity to NaCl, with reduced growth and even death under moderate salinity. The whole set of data indicates that AtHKT1 is involved in Na(+) recirculation from shoots to roots, probably by mediating Na(+) loading into the phloem sap in shoots and unloading in roots, this recirculation removing large amounts of Na(+) from the shoot and playing a crucial role in plant tolerance to salt.  相似文献   

8.
Yeast membrane proteins SMF1, SMF2, and SMF3 are homologues of the DCT1 metal ion transporter family. Their functional characteristics and the implications of these characteristics in vivo have not yet been reported. Here we show that SMF1 expressed in Xenopus oocytes mediates H(+)-dependent Fe(2+) transport and uncoupled Na(+) flux. SMF1-mediated Fe(2+) transport exhibited saturation kinetics (K(m) = 2.2 microM), whereas the Na(+) flux did not, although both processes were electrogenic. SMF1 is also permeable to Li(+), Rb(+), K(+), and Ca(2+), which likely share the same uncoupled pathway. SMF2 (but not SMF3) mediated significant increases in both Fe(2+) and Na(+) transport compared with control oocytes. These data are consistent with the concept that uptake of divalent metal ions by SMF1 and SMF2 is essential to yeast cell growth. Na(+) inhibited metal ion uptake mediated by SMF1 and SMF2 expressed in oocytes. Consistent with this, we found that increased sensitivity of yeast to EGTA in the high Na(+) medium is due to inhibition of SMF1- and SMF2-mediated metal ion transport by uncoupled Na(+) pathway. Interestingly, DCT1 also mediates Fe(2+)-activated uncoupled currents. We propose that uncoupled ion permeabilities in metal ion transporters protect cells from metal ion overload.  相似文献   

9.
It is thought that Na+ and K+ homeostasis is crucial for salt-tolerance in plants. To better understand the Na+ and K+ homeostasis in important crop rice (Oryza sativa L.), a cDNA homologous to the wheat HKT1 encoding K+-Na+ symporter was isolated from japonica rice, cv Nipponbare (Ni-OsHKT1). We also isolated two cDNAs homologous to Ni-OsHKT1 from salt-tolerant indica rice, cv Pokkali (Po-OsHKT1, Po-OsHKT2). The predicted amino acid sequence of Ni-OsHKT1 shares 100% identity with Po-OsHKT1 and 91% identity with Po-OsHKT2, and they are 66-67% identical to wheat HKT1. Low-K+ conditions (less than 3 mM) induced the expression of all three OsHKT genes in roots, but mRNA accumulation was inhibited by the presence of 30 mM Na+. We further characterized the ion-transport properties of OsHKT1 and OsHKT2 using an expression system in the heterologous cells, yeast and Xenopus oocytes. OsHKT2 was capable of completely rescuing a K+-uptake deficiency mutation in yeast, whereas OsHKT1 was not under K+-limiting conditions. When OsHKTs were expressed in Na+-sensitive yeast, OsHKT1 rendered the cells more Na+-sensitive than did OsHKT2 in high NaCl conditions. The electrophysiological experiments for OsHKT1 expressed in Xenopus oocytes revealed that external Na+, but not K+, shifted the reversal potential toward depolarization. In contrast, for OsHKT2 either Na+ or K+ in the external solution shifted the reversal potential toward depolarization under the mixed Na+ and K+ containing solutions. These results suggest that two isoforms of HKT transporters, a Na+ transporter (OsHKT1) and a Na+- and K+-coupled transporter (OsHKT2), may act harmoniously in the salt tolerant indica rice.  相似文献   

10.
AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta   总被引:3,自引:0,他引:3       下载免费PDF全文
Genetic and physiological data establish that Arabidopsis AtHKT1 facilitates Na(+) homeostasis in planta and by this function modulates K(+) nutrient status. Mutations that disrupt AtHKT1 function suppress NaCl sensitivity of sos1-1 and sos2-2, as well as of sos3-1 seedlings grown in vitro and plants grown in controlled environmental conditions. hkt1 suppression of sos3-1 NaCl sensitivity is linked to higher Na(+) content in the shoot and lower content of the ion in the root, reducing the Na(+) imbalance between these organs that is caused by sos3-1. AtHKT1 transgene expression, driven by its innate promoter, increases NaCl but not LiCl or KCl sensitivity of wild-type (Col-0 gl1) or of sos3-1 seedlings. NaCl sensitivity induced by AtHKT1 transgene expression is linked to a lower K(+) to Na(+) ratio in the root. However, hkt1 mutations increase NaCl sensitivity of both seedlings in vitro and plants grown in controlled environmental conditions, which is correlated with a lower K(+) to Na(+) ratio in the shoot. These results establish that AtHKT1 is a focal determinant of Na(+) homeostasis in planta, as either positive or negative modulation of its function disturbs ion status that is manifested as salt sensitivity. K(+)-deficient growth of sos1-1, sos2-2, and sos3-1 seedlings is suppressed completely by hkt1-1. AtHKT1 transgene expression exacerbates K(+) deficiency of sos3-1 or wild-type seedlings. Together, these results indicate that AtHKT1 controls Na(+) homeostasis in planta and through this function regulates K(+) nutrient status.  相似文献   

11.
Studies suggest that Ktr/Trk/HKT-type transporters have evolved from multiple gene fusions of simple K(+) channels of the KcsA type into proteins that span the membrane at least eight times. Several positively charged residues are present in the eighth transmembrane segment, M2(D), in the transporters but not K(+) channels. Some models of ion transporters require a barrier to prevent free diffusion of ions down their electrochemical gradient, and it is possible that the positively charged residues within the transporter pore may prevent transporters from being channels. Here we studied the functional role of these positive residues in three Ktr/Trk/HKT-type transporters (Synechocystis KtrB-mediated K(+) uniporter, Arabidopsis AtHKT1-mediated Na(+) uniporter and wheat TaHKT1-mediated K(+)/Na(+) symporter) by examining K(+) uptake rates in E. coli, electrophysiological measurements in oocytes and growth rates of E. coli and yeast. The conserved Arg near the middle of the M2(D) segment was essential for the K(+) transport activity of KtrB and plant HKTs. Combined replacement of several positive residues in TaHKT1 showed that the positive residue at the beginning of the M2(D), which is conserved in many K(+) channels, also contributed to cation transport activity. This positive residue and the conserved Arg both face towards the ion conducting pore side. We introduced an atomic-scale homology model for predicting amino acid interactions. Based on the experimental results and the model, we propose that a salt bridge(s) exists between positive residues in the M2(D) and conserved negative residues in the pore region to reduce electrostatic repulsion against cation permeation caused by the positive residue(s). This salt bridge may help stabilize the transporter configuration, and may also prevent the conformational change that occurs in channels.  相似文献   

12.
13.
HKT1 is a high affinity K(+) transporter protein that is a member of a large superfamily of transporters found in plants, bacteria, and fungi. These transporters are primarily involved in K(+) uptake and are energized by Na(+) or H(+). HKT1 is energized by Na(+) but also mediates low affinity Na(+) uptake and may therefore be a pathway for Na(+) uptake, which is toxic to plants. The aim of this study was to identify regions of HKT1 that are involved in K(+)/Na(+) selectivity and alter the amino acid composition in those regions to increase the ionic selectivity of the transporter. A highly charged loop was identified, and two deletions were created that resulted in the removal of charged and uncharged amino acids. The functional changes caused by the deletions were studied in yeast and Xenopus oocytes. The deletions improved the K(+)/Na(+) selectivity of the transporter and increased the salt tolerance of the yeast cells in which they were expressed. In light of recent structural models of members of this symporter superfamily, it was necessary to determine the orientation of this highly charged loop. Introduction of an epitope tag allowed us to demonstrate that this loop faces the outside of the membrane where it is likely to facilitate the interaction with cations such as K(+) and Na(+). This study has identified an important structural feature in HKT1 that in part determines its K(+)/Na(+) selectivity. Understanding the structural basis of the functional characteristics in transporters such as HKT1 may have important implications for increasing the salt tolerance of higher plants.  相似文献   

14.
The salt tolerance locus SOS1 from Arabidopsis has been shown to encode a putative plasma membrane Na(+)/H(+) antiporter. In this study, we examined the tissue-specific pattern of gene expression as well as the Na(+) transport activity and subcellular localization of SOS1. When expressed in a yeast mutant deficient in endogenous Na(+) transporters, SOS1 was able to reduce Na(+) accumulation and improve salt tolerance of the mutant cells. Confocal imaging of a SOS1-green fluorescent protein fusion protein in transgenic Arabidopsis plants indicated that SOS1 is localized in the plasma membrane. Analysis of SOS1 promoter-beta-glucuronidase transgenic Arabidopsis plants revealed preferential expression of SOS1 in epidermal cells at the root tip and in parenchyma cells at the xylem/symplast boundary of roots, stems, and leaves. Under mild salt stress (25 mM NaCl), sos1 mutant shoot accumulated less Na(+) than did the wild-type shoot. However, under severe salt stress (100 mM NaCl), sos1 mutant plants accumulated more Na(+) than did the wild type. There also was greater Na(+) content in the xylem sap of sos1 mutant plants exposed to 100 mM NaCl. These results suggest that SOS1 is critical for controlling long-distance Na(+) transport from root to shoot. We present a model in which SOS1 functions in retrieving Na(+) from the xylem stream under severe salt stress, whereas under mild salt stress it may function in loading Na(+) into the xylem.  相似文献   

15.
The mgtC gene of Salmonella enterica serovar Typhimurium encodes a membrane protein of unknown function that is important for full virulence in the mouse. Since mgtC is part of an operon with mgtB which encodes a Mg(2+)-transporting P-type ATPase, MgtC was hypothesized to function in ion transport, possibly in Mg(2+) transport. Consequently, MgtC was expressed in Xenopus laevis oocytes, and its effect on ion transport was evaluated using ion selective electrodes. Oocytes expressing MgtC did not exhibit altered currents or membrane potentials in response to changes in extracellular H(+), Mg(2+), or Ca(2+), thus ruling out a previously postulated function as a Mg(2+)/H(+) antiporter. However, addition of extracellular K(+) markedly hyperpolarized membrane potential instead of the expected depolarization. Addition of ouabain to block the oocyte Na(+),K(+)-ATPase completely prevented hyperpolarization and restored the normal K(+)-induced depolarization response. These results suggested that the Na(+),K(+)-ATPase was constitutively activated in the presence of MgtC resulting in a membrane potential largely dependent on Na(+),K(+)-ATPase. Consistent with the involvement of Na(+),K(+)-ATPase, oocytes expressing MgtC exhibited an increased rate of (86)Rb(+) uptake and had increased intracellular free [K(+)] and decreased free [Na(+)] and ATP. The free concentrations of Mg(2+) and Ca(2+) and cytosolic pH were unchanged, although the total intracellular Ca(2+) content was slightly elevated. These results suggest that the serovar Typhimurium MgtC protein may be involved in regulating membrane potential but does not directly transport Mg(2+) or another ion.  相似文献   

16.
Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.  相似文献   

17.
During final maturation the oocytes of many marine teleosts swell four to five times their original size due to uptake of water. The involvement of active inorganic ion transport and Na+,K(+)-ATPase in oocyte hydration in Atlantic croaker (Micropogonias undulatus) and spotted seatrout (Cynoscion nebulosus), marine teleosts which spawn pelagic eggs, was investigated by examining changes in the inorganic ion content of ovarian follicles containing mainly oocytes, by performing in vitro incubations of the follicles with ion channel blockers, and by assaying membrane preparations of ovaries containing hydrating and non-hydrating oocytes for Na+,K(+)-ATPase activity and content. There were marked increases in the contents of K+, Mg++, and Ca++, but not Na+, in oocytes of M. undulatus and C. nebulosus during hydration. Incubation of follicle-enclosed oocytes in K(+)-free medium or with ouabain or amiloride, inhibitors of Na+,K(+)-ATPase and Na+ channels, respectively, blocked gonadotropin-induced oocyte hydration in M. undulatus. In addition, Na+,K(+)-ATPase activity increased threefold and the concentration of the enzyme increased 50% in ovarian tissue during oocyte hydration. These results strongly suggest a major role for active ion regulation by a ouabain-sensitive Na+,K(+)-ATPase system in oocyte hydration in two species of sciaenid fishes.  相似文献   

18.
In order to characterize the transport systems mediating K+ uptake into oocytes, flux studies employing 86Rb were performed on Xenopus oocytes stripped of follicular cells by pretreatment with Ca2(+)-Mg2(+)-free Barth's medium. Total Rb+ uptake consisted of an ouabain-sensitive and an ouabain-insensitive flux. In the presence of 100 mmol/l NaCl and 0.1 mmol/l ouabain the ouabain-insensitive flux amounted to 754.7 +/- 59.9 pmol/oocyte per h (n = 30 cells, i.e., 10 cells each from three different animals). In the absence of Na+ (Na+ substituted by N-methylglucamine) or when Cl- was replaced by NO3- the ouabain-insensitive flux was reduced to 84.4 +/- 42.9 and 79.2 +/- 12.1 pmol/oocyte per h, respectively (n = 50 cells). Furthermore, this Na(+)- and Cl(-)-dependent flux was completely inhibited by 10(-4) mol/l bumetanide, a specific inhibitor of the Na(+)-K(+)-2Cl- cotransport system. These results suggest that K+ uptake via a bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport system represents a major K+ pathway in oocytes.  相似文献   

19.
20.
The function of HKT1 in roots is controversial. We tackled this controversy by studying Na+ uptake in barley (Hordeum vulgare) roots, cloning the HvHKT1 gene, and expressing the HvHKT1 cDNA in yeast (Saccharomyces cerevisiae) cells. High-affinity Na+ uptake was not detected in plants growing at high K+ but appeared soon after exposing the plants to a K(+)-free medium. It was a uniport, insensitive to external K+ at the beginning of K+ starvation and inhibitable by K+ several hours later. The expression of HvHKT1 in yeast was Na+ (or K+) uniport, Na(+)-K+ symport, or a mix of both, depending on the construct from which the transporter was expressed. The Na+ uniport function was insensitive to external K+ and mimicked the Na+ uptake carried out by the roots at the beginning of K+ starvation. The K+ uniport function only took place in yeast cells that were completely K+ starved and disappeared when internal K+ increased, which makes it unlikely that HvHKT1 mediates K+ uptake in roots. Mutation of the first in-frame AUG codon of HvHKT1 to CUC changed the uniport function into symport. The expression of the symport from either mutants or constructs keeping the first in-frame AUG took place only in K(+)-starved cells, while the uniport was expressed in all conditions. We discuss here that the symport occurs only in heterologous expression. It is most likely related to the K+ inhibitable Na+ uptake process of roots that heterologous systems fail to reproduce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号