首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of water stress on needle ultrastructure of 2-year-old Scots pine (Pinus sylvestris L.) and 5-year-old Norway spruce [Picea abies (L.) Karst.] seedlings were studied in greenhouse experiments. Drought stress was induced by leaving seedlings without watering, and waterlogging stress was produced by submerging the seedling containers in water. Needle samples for ultrastructural analyses were collected several times during the experiments, and samples for nutrient analyses at the end of the experiments. In drought stress, plasmolysis of mesophyll and transfusion parenchyma tissues, aggregation of chloroplast stroma and its separation from thylakoids and decreased size and abundance of starch grains in needles of both species were observed. The concentration of lipid bodies around the chloroplasts were detected in pine needles. Calcium and water concentrations in spruce needles were lower by the end of the experiments compared to controls. In waterlogging treatment, swelling of phloem cells in pine needles and large starch grains, slight swelling of thylakoids and increased translucency of plastoglobuli in chloroplasts of both species studied were observed. The phosphorus concentration in pine needles was higher while phosphorus, calcium and magnesium concentrations in spruce needles were lower in the waterlogging treatments compared to controls. Typical symptoms induced by drought stress, e. g. aggregation of chloroplast stroma and its separation from thylakoids, were detected, but, in waterlogging stress, ultrastructural symptoms appeared to be related to the developing nutrient imbalance of needles.  相似文献   

2.
The ultrastructure of chloroplasts in mesophyll cells of Pinus silvesris was examined under the electron microscope. Secondary needles were regularly sampled from a tree in a natural stand for one year. Primary needles from one-year-old seedlings exposed to frost hardening and dehardening conditions in a controlled environment chamber were also studied. These seedlings were exposed to 8 or 55 W m-2. All needles were put in fixative at the different sampling dates and stored in a refrigerator until they were prepared for electron microscopy at the end of the experimental period. During the summer the choroplasts were symmetrically shaped and heavily loaded with starch. The membrane systems were well developed and consisted of both grana and stroma thylakoids. In autumn and during early artificial frost hardening the starch content was reduced, the chloroplasts appeared amoeboid and membrane-free stroma regions were seen. Later the chloroplasts became swollen and aggregated in one part of the cell. Starch was lost and the chloroplasts aggregated earlier at 8 W m-2 than at 55 W m-2. During winter the stroma thylakoids were first reduced in number and later even the grana thylakoids were damaged, resulting in mostly disorganized single membranes. Also the chloroplast envelope disappeared. In spring and early summer the chloroplasts migrated to the proximity of the cell walls. The membrane systems were reorganized and starch accumulated. During the first days of artificial dehardening the photosynthetic membranes were severely damaged, especially at 55 W m-2, but soon new membranes were formed. Starch accumulated earlier at 55 than at 8 W m-2. The reported ultrastructural variations are discussed in relation to functional and biochemical fluctuations caused by the season or by artificial variations in the climate as demonstrated earlier.  相似文献   

3.
Chloroplasts were isolated from primary needles of 1-year-old seedlings and from secondary needles of a 20-year-old pine tree in a natural stand. In autumn the electron transport capacities of PSII, PSI and PS (II + I) decreased and the electron transport between PSII and PSI became inhibited in October in the 20-year-old tree. This inhibition lasted until May the following year. The partial reactions of PSI and PSII still showed low but fairly constant rates during the whole winter seedlings. Seasonal changes in the electron transport properties of 1-year-old showed the same general trends as observed in the 20-year-old tree, but the changes were less pronounced. However, in snow-covered seedlings the PSI-mediated electron transport and the electron transport from H2O to NADP increased during the late winter when the seedlings were still covered by snow. The total chlorophyll content of the needles decreased in autumn and winter. Low temperature fluorescence ratios of F692/F680 and F726/F680 indicated more severe destruction of the chlorophyll a antennae closely associated with the two photosystems than of the light harvesting chlorophyll a/b complex. In this case, too, the changes were more pronounced in the 20-year-old tree than in the 1-year-old seedlings. The chlorophyll/P700 ratios indicated a more marked reduction in the reaction centre molecules during autumn than in the antennae chlorophyll molecules. The changes in electron transport and low temperature fluorescence properties which occurred during autumn and winter were mainly reversed during spring.  相似文献   

4.
Tropospheric ozone is a widespread and phytotoxic air pollutant in the industrialized world and causes reduced growth in many tree species. It is therefore important that, for example, the responses of the economically important loblolly pine to ozone are determined thoroughly. The objective of the study was to determine changes in ultrastructure, the vanadate-sensitive ATPase activity of the plasma membrane, the fatty acids of plasma membrane phospholipids, visible injury, and growth in loblolly pine (Pinus taeda L.) needles exposed to different concentrations of ozone in open-top chambers. The treatments were charcoal filtered air (CF), nonfiltered air (NF), or NF-air with ozone added for 12 h daily at 1.5- or 2-fold ambient ozone concentrations from May to October, 1993. Visible injury was more severe in the high than in the low ozone treatments. Growth of needles of the first flush of 1993 was significantly reduced in the highest ozone treatment. Two types of ultrastructural injury, characterized as either acute or chronic, were observed in mesophyll cells under elevated ozone. The acute injury lead to cell collapse and death. The chronic injury, characterized by several symptoms, e.g. decreased chloroplast size and increased density of the stroma, was also found in the NF ozone treatment. Increased density of chloroplast stroma and swelling of thylakoids were transient symptoms, suggesting partial recovery as ozone concentrations decreased in fall. Ozone induced decreases in the specific activity of vanadate-sensitive ATPase of plasmalemma and in the degree of unsaturation in phospholipid fatty acids. The detected reduced needle growth, ultrastructural injury and perturbations in the function and composition of the plasma membrane indicate susceptibility of loblolly pine to ozone. Changes in the plasma membrane phospholipids may have contributed to the decrease in ATPase activity. Injury to the key enzyme of the plasma membrane can directly affect intracellular processes. In the long-term, decreased viability of needles can lead to reductions in loblolly pine productivity.  相似文献   

5.
 To investigate the effects of ozone exposure and soil drought, singly and in combination, on gas exchange, antioxidant contents and pigments in current-year needles of Norway spruce [Picea abies (L.) Karst.] 4-year-old seedlings were fumigated in growth chambers with either charcoal-filtered air or with 100 nl l–1 ozone for 106 days. After 3 weeks a 20% reduction in gas exchange was observed in ozone-treated seedlings. However, no further decrease occurred in spite of continued ozone exposure. Whole needle ascorbate and apoplastic ascorbate increased until the end of the experiment and contents were 62% and 82%, respectively, higher than in ozone-free controls. This increase in ascorbate might have protected net photosynthesis from further decline. Ozone pre-treated plants and ozone-free controls were subjected to soil drought for 38 days which caused stomatal narrowing. Thereby ozone uptake was reduced when compared to well watered seedlings. At the end of the experiment drought alone, and even more in combination with ozone, had also caused an increase in ascorbate. Glutathione increased only in drought-stressed seedlings. The redox states of the ascorbate and the glutathione pools were not affected by any treatment. Superoxide dismutase activity declined under both stresses but was most reduced by ozone alone. While chlorophyll and neoxanthin contents remained unchanged, carotenes were significantly decreased upon drought. The combination of O3 and drought induced increased lutein contents, an increased pool size of the xanthophyll cycle as well as an increased epoxidation status of the xanthophyll cycle. These results suggest that spruce needles seem to be able to acclimate to ozone stress but also to drought stress by increasing their ascorbate pools and protecting pigments. Received: 15 September 1997 / Accepted: 24 March 1998  相似文献   

6.
Summary The cellular structures of acid rain-irrigated needles of several provenances of Norway spruce (Picea abies L. Karst) seedlings were studied after winter experimental freezing. Frost injuries and recovery were characterized by visual damage scoring and classification of mesophyll cell alterations, also using histochemical methods for carbohydrate fluorescent staining. The treatment with-30° C during the late dormancy period was sufficient to cause significant injuries and intracellular degradation in the tissues of the green needles. The most affected seedlings in terms of visual injury scoring were found among those treated with clean water or at pH 3, while freezing injury, defined as an occlusion of phenolic substances in the central vacuole of the mesophyll cells, was most abundant in the needles from spruces irrigated either with clean water or at pH 4 or pH 3. Electron microscopy revealed the details of the injury, e. g. thinning out of the cytoplasm and chloroplast stroma, darkening of the chloroplasts and eventually swelling of the chloroplasts and protoplast. PAS and ConA reactions in the needle tissue revealed intense starch accumulation in the mesophyll and transfusion tissues as early as in March, with a tendency to increase, especially in the untreated needles during the recovery period. Plasma membrane disturbances were indicated by histochemical identification of callose deposits in the mesophyll cell walls, these being most abundant in the acid rain-treated needles. All these findings suggest that freezing at –30° C was more deleterious to the seedlings pretreated with acid or clean water than to those not given additional irrigation.  相似文献   

7.
Leaf specimens of evergreen Diapensia lapponica were collected monthly in Northern Finland (ca 70°N) in order to study seasonal changes in the ultrastructure of the chloroplasts of the palisade mesophyll.
The volume fraction of chloroplasts per cell was lowest in summer and increased towards autumn and winter. However, the relative size seemed to be higher in summer than in other seasons. Length/width (L/W) ratio was calculated as an index of the chloroplast shape. The shape varied from elongated (usually concavo-convex in profile), with an L/W ratio from 1.9 to 2.5 in summer, to roundish or irregular (L/W ratio from 1.2 to 1.4) in midwinter. In autumn the chloroplasts were most elongated (LW ratio 2.6). The starch content was highest at the end of June when it constituted 38% of the volume of chloroplast. It decreased from then till November and was absent during the rest of the winter. Changes in the thylakoid system involved an increase in the number of partitions from an average of three in early summer to 11 in autumn and a decrease to M again towards winter. In spring it was up to 7 again. The large grana and high portion of stroma thylakoids observed in late August - September (the period of rhythmic light) are consistent with the high photosynthesis activity reported previously in D. lapponica in laboratory conditions.  相似文献   

8.
Ribulose bisphosphate carboxylase activity was examined in Pinus silvestris L. during successive seasons. The enzyme activities were studied both in seedlings, kept under controlled conditions in a climate chamber, and in needles from a 15-year-old tree in a natural stand. The enzyme activities were analysed in cell-free extracts prepared with Tween 80 as protective agent. The carboxylase activity fluctuated periodically both in the seedlings and in the natural stand. In the seedlings, the weight-related activity in the older needles increased 50–100% (in the cotyledons c. 200%) in the beginning of the “summer”. It decreased as the new shoot developed. The specific activity increased c. 100%. With chlorophyll as base, the activity usually decreased during “summer”. In the developing current needles the carboxylase activity increased when expressed on a weight or on a protein basis. The decrease in weight-related carboxylase activity in the older needles was preceded by, or simultaneous with, loss of total protein. It is suggested that protein, including the carboxylase, is utilized as nitrogen reserve for the new shoot. During hardening by combined photoperiod and thermoperiod, the carboxylase activity decreased when expressed relative to dry weight and protein. Calculated on a chlorophyll basis, the activity was rather constant. In the natural stand the activity in the one- and two-year-old needles increased during spring and summer and decreased during autumn and winter. Even at severe winter stress substantial carboxylase activity remained in the needles. The activity of the enzyme in vivo is discussed with respect to electron transport and net photosynthesis.  相似文献   

9.
Sirkka Soikkeli 《Protoplasma》1980,103(3):241-252
Summary Resolution of the ultrastructure of the needles of both Scots pine (Pinus silvestris L.) and Norway spruce [Picea abies (L.) Karst.] is strongly influenced by the molarity of the buffer used in fixation. When 0.2 M or 0.1 M buffer is used in fixation during the summer, the constituents of the cytoplasm are precipitated, resulting in poor resolution of the membranes and lamellae and often in negative staining. The tannin in the central vacuole appears as a thick ribbon. By using correct molarities of buffer during each season (0.1 M for autumn and winter and ca. 0.05 M for the growing season), the best possible resolution will be achieved. With good resolution the tannin in the central vacuole appears in granular form throughout the year, and the cytoplasm and its organelles are clearly distinguishable during every season. During the growing season, the chloroplasts in the needles of Scots pine are spread to the cell walls and have large starch grains; the stroma and grana lamellae are well developed; the stroma and cytoplasm are rich in polysomes. Mitochondria and microbodies can be clearly resolved. During hardening and afterwords throughout the winter, the chloroplasts, which at this time contain no starch, and other cytoplasmic organelles aggregate in the corners of the cells. The chloroplast envelopes and the stroma and grana lamellae stay intact. The cytoplasm is netlike and rich in ribosomes, mitochondria and microbodies, all of which are intact and clearly distinguishable. During spring activation the structure returns to that described for the growing season.  相似文献   

10.
Net photosynthesis of seedlings of Pinus silvestris has been measured and compared with the activities of photosynthetic electron transport and extracted RuBP carboxylase. The effects of prolonged frost hardening (photoperiod 8 h, + 3°C) followed by winter stress at subzero temperatures were analysed. There was a parallel effect of frost hardening and winter stress on the photosynthetic properties of both intact seedlings and isolated chloroplast thylakoids. The activity of extracted RuBP carboxylase was less affected by the treatments. In relation to earlier works we conclude that the decay of net photosynthesis in winter climate is determined by the electron transport properties of the chloroplast thylakoids, i.e. by the pool sizes of photosynthetically active plastoquinone. The results of this work justify the definition of two phases in the response of conifers towards autumn and winter climates: I. Frost hardening occurs at temperatures slightly above zero and it does not affect the efficiency of photosynthesis as defined by the quantum yield at rate limiting light absorption. II. Winter stress occurs at subzero temperatures and it is characterized by a suppression of the photosynthetic efficiency as a result of damage within the photosynthetic apparatus.  相似文献   

11.
In an open-field experiment, 50-year-old trees of Scots pine (Pinus sylvestris L.) were fumigated with low concentrations of SO2 and NO2 (10–15 nl I?1) during the growing season in four consecutive years (1988 to 1991). Results from the autumn and early winter of 1991 and 1992 are presented. The maximum photochemical efficiency of photosystem II (PSII), as indicated by the ratio of variable to maximum fluorescence (Fv/FM) was assessed in current and one-year-old needles from the top and the bottom of the canopy. Furthermore, simultaneous measurements of photosynthetic O2 evolution and chlorophyll fluorescence were made in current-year needles at 20°C. In general, the Fv/FM ratio as well as the gross rate of O2 evolution in needles of fumigated trees was not significantly different from that in needles of control trees during the fumigation period. However, both current and one-year-old needles sampled in November and December 1991 from the top of the canopy of fumigated trees had significantly lower Fv/FM values than corresponding needles of control trees. Similar differences in Fv/FM correlated with the treatments were observed in needles from the bottom of the canopy, indicating that the depression of Fv/FM in needles of fumigated trees was not due to an increased susceptibility to photoinhibition. In 1992, when no fumigation occurred, differences in Fv/FM between the treatments were not significant during autumn and early winter. The gross rate of O2 evolution at high irradiances was significantly lower in current-year needles of fumigated trees sampled in November and December 1991 than in those of control trees. Furthermore, a nearly identical linear relationship between the quantum yield of PSII electron transport determined from chlorophyll fluorescence and the quantum yield of O2 evolution (gross rate of O2 evolution/PPFD) was found during autumn and early winter. This appeared to be largely a result of changes in the thermal energy dissipation within PSII. The observed differences in photosynthetic characteristics correlated with the different treatments after the fumigation period is suggested to be mainly caused by increased sensitivity of the needles of fumigated trees to low and subfreezing temperatures. However, current-year needles of fumigated trees tended to have a lower N content than those of control trees, which may partly explain the differences in gross photosynthesis between fumigated and control trees.  相似文献   

12.
The effects of low‐level ozone exposure and suppression of natural mycorrhizas on the above‐ground chemical quality of Scots pine (Pinus sylvestris L.) needles and insect herbivore performance were studied in a two‐year field experiment. Seedlings were fumigated with the ozone doses 1.5–1.7 times the ambient, and natural mycorrhizal infection level was about 35% reduced in roots with fungicide propiconazole. On ozone‐exposed seedlings the mean relative growth rate (MRGR) of Lygus rugulipennis Popp. nymphs was lower than on ambient ozone seedlings, but Gilpinia pallida Klug sawfly larvae grew better on elevated ozone seedlings than on ambient ozone seedlings. MRGR of Schizolachnus pineti Fabr. and Cinara pinea L. aphid nymphs or Neodiprion sertifer Geoffr. sawfly larvae or the oviposition of L. rugulipennis and N. sertifer were not affected by ozone exposure. Although ozone exposure did not affect total phenolics, total terpene, total or individual resin acid, total free amino acid, nutrient or sugar concentrations in needles, MRGR of L. rugulipennis positively correlated with total terpenes and MRGR of G. pallida positively with total amino acids. In addition, ozone exposure increased serine and proline concentration and marginally also starch concentration in needles. When mycorrhizas were reduced with fungicide, only MRGR of L. rugulipennis nymphs increased, but performance of other insect herbivores studied was not changed. However, number of L. rugulipennis eggs correlated positively with mycorrhizal infection level and also with total sugars. Reduction of mycorrhizas did not strongly affect the concentrations of analysed compounds in needles, because only phosphorus and potassium and some individual resin acids were reduced by fungicide treatment. These results suggest that low‐level ozone exposure and moderately declined mycorrhizal infection do not drastically affect either the above‐ground chemical quality of Scots pine seedlings or performance of studied insect herbivores.  相似文献   

13.
Seedling establishment of a perennial,Veronicastrum sibiricum ssp.japonicum colonizing at 1,600 m altitude in Nikko National Park was studied for two years. About half of the first-year seedlings died during the growing season and 45–74 per cent of the seedlings surviving the first summer died during the following winter season. This winter mortality depended on the end-of-season size of the seedling in the previous autumn and was caused mainly by the absence of perennation buds. Seedlings which had emerged on bare ground attained larger size and had higher winter survival than seedlings in a mat of moss. Seedlings germinating in early season attained larger size and had higher probability of winter survival than seedlings germinating in later season.  相似文献   

14.
Scots pine (Pinus sylvestris L.) seedlings were fumigated with 1.2–1.5 x ambient ozone (cumulative exposure) over 2 seasons in an open-air experiment. Starch and fatty acid concentrations were analyzed in needle and root tissue in the summer, autumn and early winter. Seedling growth was determined by measuring the height of the stem and the total shoot and root biomass. Significant decreases in growth were found in exposed seedlings, even though visible symptoms were lacking. Almost significant reductions in needle and root starch concentrations were found. In the ozone treated foliage, significant increases in myristic acid (140) were detected, but the major fatty acids remained unchanged. Fatty acid ratios showed that the degree of unsaturation decreased in treated needles in the summer. In the roots of ozone treated seedlings, changes in fatty acids were different from those in the foliage. Decreases of the main root fatty acids (160, 180, 181, 18:2, 183) were detected in the summer. These results show that Scots pine is susceptible to enhanced levels of ozone. If the tropospheric ozone levels continue to increase it may have deleterious effects on Scots pine forests in Finland.  相似文献   

15.
The effect of ice encasement on the physiological, metabolic, and ultrastructural properties of winter wheat (Triticum aestivum L.) grown under field conditions was examined by artificially encasing winter wheat in ice during early winter. Cold hardiness and survival of ice-encased seedlings declined less rapidly in Kharkov, a cold-hardy cultivar than in Fredrick, a less hardy cultivar. Ethanol did not accumulate in non-iced seedlings, but increased rapidly upon application of an ice sheet. Lactic acid accumulated in both cultivars during late autumn, prior to ice encasement, and elevated levels of lactic acid were maintained throughout the winter in seedlings from both iced and non-iced plots. The rate of O2 consumption of shoot tissue of seedlings from non-iced plots remained relatively constant throughout the winter, but declined rapidly in seedlings from ice encased plots. Major ultrastructural changes did not occur in shoot apex cells of non-iced winter wheat seedlings during cold hardening under field conditions. However, the imposition of an ice cover in early January resulted in a proliferation of the endoplasmic reticulum membrane system of the cells, frequently resulting in the formation of concentric whorls of membranes, often enclosing cytoplasmic organelles. Electrondense areas within the cytoplasm which appeared to be associated with the expanded endoplasmic reticulum were also frequently observed.  相似文献   

16.
马尾松(Pinus massoniana)是我国南方生态建设与造林用材的主要树种,为了揭示马尾松抗虫机理尤其是诱导抗虫性的分子机制,该研究以马尾松幼苗为材料,通过外源喷施茉利酸甲酯(Me JA),分析了处理与对照间植株针叶显微结构、萜类合成酶活性及其细胞化学定位的变化。结果表明:在0.2 mmol·L~(-1)Me JA处理下马尾松植株松针中萜类物质,尤其是单萜、二萜的相对含量增加,马尾松毛虫拒食性明显,诱导抗性增强。显微观测中,针叶叶肉细胞内树脂道分泌物增加,叶绿体数目减少,但叶绿体体积增大,叶绿体片层结构增加。Me JA处理4周后,针叶中萜类合成酶活性增加,通过电镜酶细胞化学观察,膜系统尤其是叶绿体膜上萜类合成酶活性定位明显增强。这说明Me JA诱导的马尾松诱导抗性可能与改变的叶绿体结构及绿色质体萜类合成酶活性密切相关。  相似文献   

17.
M. Senser  E. Beck 《Planta》1977,137(3):195-201
Hill reaction and noncyclic photophosphorylation of isolated class C chloroplasts of spruce (Picea abies (L.) Karst.), as well as 14CO2 fixation by whole needles at constant laboratory conditions proceeded at high rates during spring and early summer, declined during late summer and autumn by about 60%, remained at this level during winter, and recovered quickly in early spring. During summer, the whole needles proved to be frost labile, since after exposure to-20°C and careful thawing, fast chlorophyll degradation occurred. In addition, only photosynthetically inactive chloroplasts could be isolated from those precooled needles. On the contrary, during winter the photochemical activities of plastids from freshly harvested needles did not differ from those of artificially frozen-thawed needles. When isolated spruce chloroplasts were exposed to the same subfreezing temperatures as the whole needles, no influence of freezing on the photochemical activities was observed, irrespective of whether the plastids were isolated from frost sensitive or frost hardened needles. It is concluded that frost damage to spruce chloroplasts is due to an attack of membrane toxic compounds or lytic enzymes which were liberated upon freezing from more labile compartments. Frost hardening of the chloroplasts, as determined by the stability of chlorophyll after exposure of the needles to low temperatures, as well as by the isolation of photosynthetically active chloroplasts from such precooled needles, appeared to depend at least on 2 processes: (i) an alteration of the composition of the photosynthetically active membranes and (ii) and additional stabilization of these membranes by protecting substances. The first process was indicated by a large increase (decrease) of the capability of isolated chloroplasts for PMS-mediated photophosphorylation which accompanied natural or artificial frost hardening (dehardening). Production of cryoprotecting compounds was suggested by a significant higher stability against NaCl observed with class C chloroplasts isolated from frost hardened needles as compared to that of plastids from frost labile material. The decrease of the capability for both, the ferricyanide dependent photoreactions of the plastids and the CO2 fixation by whole needles, which was observed during the frost hardening phase, cannot be due to freezing injuries; it rather appears to be a consequence of the frost hardening process.  相似文献   

18.
Inhibition of photosynthesis was followed during autumn and early winter in current-year sun and shade needles of unfertilized and fertilized Norway spruce [Picea abies (L.) Karst.] by simultaneous measurements of photosynthetic O2 evolution and chlorophyll a fluorescence at 20 °C. The CO2-saturated rate of O2 evolution was generally higher in sun needles of fertilized trees than in those of unfertilized trees over a wide range of incident photon flux densities (PFDs). Furthermore, the maximum photo-chemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (FV/FM) was generally higher for sun needles of fertilized trees. The depression of fv/fm during frost periods was more pronounced in sun needles than in shade needles, indicating that winter inhibition in Norway spruce is strongly light-dependent. However, the inhibition of the rate of O2 evolution at high PFDs in needles of fertilized trees during early winter was partly independent of the light regime experienced by those needles in the field, which appeared to result in a pronounced decrease in the proportion of oxidized PS II reaction centres in shade needles. A nearly identical linear relationship between the quantum yield of PS II electron transport determined by chlorophyll fluorescence and the quantum yield of O2 evolution (gross rate of O2 evolution/PFD) was obtained for the investigated types of needles during autumn and early winter. Except for shade needles of fertilized trees, this appeared to be largely achieved by adjustments in thermal energy dissipation within PS II.  相似文献   

19.
The correlation between structural changes of the vascular bundles and needle yellowing was examined for needles of damaged spruce (Picea abies (L.) Karst.) growing at a Mg-deficient and ozone polluted mountain site in the Central Black Forest (840m a.s.l.). In the previous year's sun-exposed needles, the following sequence of events was observed: (1) rapid needle yellowing, (2) hypertrophy and anomalous divisions of cambium cells, (3) phloem collapse, and, (4) production of atypical xylem tracheids. Under defined shade (reduction of the photosynthetically active photon flux density of the ambient light by 85-90%), the needles remained green, while the phloem collapsed completely within the first 6 weeks of shading; subsequently, a reversal of the collapse was observed. Under both light conditions, the content of Mg not bound to chlorophyll (Mg(free)) was in the range of 0.1 mg g(-1) needle dry matter, and hardly changed throughout the investigation period. After Mg fertilization, the Mg(free) level of the previous year's needles increased to 0.2 mg g(-1) dry matter, the light-exposed needles remained green, and the vascular bundles developed no anomalies. The data show that the rapid needle yellowing of ozone-exposed Mg-deficient needles did not depend on the collapse of the phloem. Mg deficiency played a key role in the development of anomalous vascular bundles under light, and also appears to explain the transient changes in sieve cell structure under shade. The role of Mg deficiency, rather than ozone pollution, in the damage of the sieve cells was confirmed in a long-term ozone exposure experiment with young clonal spruce growing under defined conditions.  相似文献   

20.
Summary The amounts of starch, soluble sugars, triacylglycerols, diacylglycerols and free fatty acids were studied in Scots pine (Pinus sylvestris L.) during an annual cycle in current-year needles and in 1-, 2- and 3-year-old needles collected shortly after bud break. Determination of the compounds was performed using specific enzymatic assays, capillary gas chromatography and thin layer chromatography. Newly emerging needles contained relatively large amounts of starch, but only trace amounts of fat. During autumn and winter, fat content rose, while starch content decreased; amounts of both these reserve materials were very high the next spring shortly before bud break and decreased again during shoot elongation. Concentration of intermediates in triacylglycerol biosynthesis (diacylglycerols and free fatty acids), were low in summer and high in winter. The same pattern was observed for fructose and glucose (the predominant soluble sugars), galactose/arabinose and raffinose/melibiose. In contrast, sucrose concentrations were highest in spring and in autumn. Mature needles of different ages collected in May showed significant differences only in their triacylglycerol and starch content. Concentration changes of reserve materials are discussed in relation to season, mobilization and translocation processes, dormancy, frost resistance and the possibility of carbohydrate-fat interconversions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号