首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of G-6-Pi to the incubation system for MgATP-dependent calcium transport in liver microsomes results in a marked stimulation of Ca2+ uptake. At physiological pH values (7.2-7.4), the G-6-Pi stimulated calcium uptake is maximal and equals that obtained with oxalate at pH 6.8. In the system for the G-6-Pi-stimulated calcium uptake, G-6-Pi is actively hydrolyzed by the glucose 6-phosphatase activity of liver microsomes. Such an activity is not influenced by the concomitant calcium uptake. After the incubation of the system for the MgATP-dependent microsomal calcium transport in the presence of G-6-Pi, Pi and calcium are found in equal concentrations, on a molar base, in the recovered microsomal fraction. These results are interpreted in the light of a possible cooperative activity between the energy-dependent calcium pump of liver microsomes and the glucose 6-phosphatase multicomponent system.  相似文献   

2.
Mechanisms regulating the energy-dependent calcium sequestering activity of liver microsomes were studied. The possibility for a physiologic mechanism capable of entrapping the transported Ca2+ was investigated. It was found that the addition of glucose 6-phosphate to the incubation system for MgATP-dependent microsomal calcium transport results in a marked stimulation of Ca2+ uptake. The uptake at 30 min is about 50% of that obtained with oxalate when the incubation is carried out at pH 6.8, which is the pH optimum for oxalate-stimulated calcium uptake. However, at physiological pH values (7.2-7.4), the glucose 6-phosphate-stimulated calcium uptake is maximal and equals that obtained with oxalate at pH 6.8. The Vmax of the glucose 6-phosphate-stimulated transport is 22.3 nmol of calcium/mg protein per min. The apparent Km for calcium calculated from total calcium concentrations is 31.9 microM. After the incubation of the system for MgATP-dependent microsomal calcium transport in the presence of glucose 6-phosphate, inorganic phosphorus and calcium are found in equal concentrations, on a molar base, in the recovered microsomal fraction. In the system for the glucose 6-phosphate-stimulated calcium uptake, glucose 6-phosphate is actively hydrolyzed by the glucose-6-phosphatase activity of liver microsomes. The latter activity is not influenced by concomitant calcium uptake. Calcium uptake is maximal when the concentration of glucose 6-phosphate in the system is 1-3 mM, which is much lower than that necessary to saturate glucose-6-phosphatase. These results are interpreted in the light of a possible cooperative activity between the energy-dependent calcium pump of liver microsomes and the glucose-6-phosphatase multicomponent system. The physiological implications of such a cooperation are discussed.  相似文献   

3.
The energy-dependent uptake of calcium by inverted membrane vesicles of Escherichia coli was investigated. Methods for preparation and storage of the vesicles were devised to allow for the maximal activity and stability of the calcium transport system. The pH and temperature optima for the reaction were observed to occur at pH 8.0 AND 30 DEGREES, RESPECTIVELY. The eft was found that the extent of the reaction depended on the presence of phosphate or oxalate. Phosphate was found to enter the vesicles at a rate slower than that of calcium. A Ca2+:Pi ratio of approximately 1.5 was found, suggesting formation of Ca3(PO4)2. Monovalent cations stimulated calcium uptake, with the order of effectiveness being K+ is greater than Na+ is greater than Li+ is greater than NH4+. Inhibition was found with certain divalent cations, but these also inhibited the electron transport chain. Of the divalent cations examined only Mg2+ and Sr2+ inhibited calcium transport without a corresponding inhibition of respiration. Calcium transport exhibited biphasic Kinetics, with a low affinity system and a high affinity system. The low affinity system showed a Km of 0.34 mM and a Vmax of 85 nmol/min/mg of protein. The kinetic constants of the high affinity system were 4.5 muM and 2 nmol/min/mg of protein. The energy for calcium transport could be derived from the electron transport chain by oxidation of NADH, D-lactate, and succinate, in order of their effectiveness. Respiration-driven calcium transport was inhibited by inhibitors of the electron transport chain and by uncouplers of oxidative phosphorylation. ATP could also be used to supply enerty for calcium transport. The ATP-driven reaction was inhibited by inhibitors of the Mg2+ATPase and by an antiserum prepared against that protein, demonstrating that that enzyme is involved in the utilization of ATP for active transport in inverted vesicles.  相似文献   

4.
1. Total ATPase levels were determined in homogenate fractions of baker's yeast, Saccharomyces cerevisiae K and Rhodotorula glutinis. The maximum ATPase activities in 8000 X g supernatant of the three yeast strains were 6.0, 1.9, and 2.2 mmol Pih-1 (gDS)-1, respectively; the activities in the sediment were somewhat higher. Exponential cells of S. cerevisiae K and R. glutinis exhibited higher ATPase levels than did the stationary cells. 2. The total ATPase activity in both yeast species showed a maximum at ph 6.8 a minimum at pH 7.2, and another broader masimum around pH 8.0. 3. No significant NaK-ATPase activity was detected in baker's yeast, in either the exponential or the stationary cells of R. glutinis, and in exponential S. cerevisiae K cells in the pH range of 6.0-9.3. 4. Stationary cells of S. cerevisiae K exhibited, at pH 7.0-8.5, A Na,K-ATPase activity attaining 9% of total ATPase level. 5.3 X 10(-3) M phenylmethyl sulphonyl fluoride had no effect on the total ATPase level in S. cerevisiae and inhibited the activity in R. glutinis by 25%; it did not bring forth any Na,K-ATPase activity apart from that found in its absence. 6. 1.5 M urea lowered the ATPase activity in R. glutinis by 68% but had no effect on S. cerevisiae cells. 10(-5) M dicyclohexylcarbodiimide suppressed the ATPase activity in S. cerevisiae and R. glutinis by 74 and 79%, respectively. Neither agent revealed and additional Na,K-ATPase activity. 7. The comparison of Na,K-ATPase activities with data on K+ fluxes across the yeast plasma membrane suggested that even with the lower flux values the Na,K-ATPase, even if present, would account for a mere 40% of transported ions. The results imply that the active ion transport in yeasts is energized by mechanisms other than the Na,K-ATPase.  相似文献   

5.
In order to study the mechanism for activation of ATP hydrolysis by Mg2+, the stoichiometry of the high affinity calcium-binding sites with respect to each form of reaction intermediate of sarcoplasmic reticulum ATPase was determined at 0 degrees C and pH 7.0 in the presence and absence of added Mg2+ using the purified ATPase preparation. High affinity calcium binding to the enzyme-ATP complex and to ADP-sensitive (E1P) and ADP-insensitive (E2P) phosphoenzymes occurred with stoichiometric ratios of 2, 2, and 0, and 3, 3, and 1 in the presence and absence of added Mg2+, respectively. The results were interpreted to indicate that in addition to 2 mol of calcium bound to the transport sites of the ATPase, 1 mol of divalent cation, which is derived from the metal component of the substrate, the metal-ATP complex, remains bound to each mole of the enzyme at least until E2P is hydrolyzed. As activation of phosphoenzyme hydrolysis by Mg2+ was blocked by the low concentrations of Ca2+ used in the calcium binding experiments, it was concluded that it is the magnesium derived from MgATP that is responsible for rapid hydrolysis of the phosphoenzyme intermediate.  相似文献   

6.
We attempted to establish whether lanthanide ions, when added to sarcoplasmic reticulum (SR) membranes in the absence of nucleotide, compete with Ca2+ for binding to the transport sites of the Ca(2+)-ATPase in these membranes, or whether they bind to different sites. Equilibrium measurements of the effect of lanthanide ions on the intrinsic fluorescence of SR ATPase and on 45Ca2+ binding to it were performed either at neutral pH (pH 6.8), i.e. when endogenous or contaminating Ca2+ was sufficient to nearly saturate the ATPase transport sites, or at acid pH (pH 5.5), which greatly reduced the affinity of calcium for its sites on the ATPase. These measurements did reveal apparent competition between Ca2+ and the lanthanide ions La3+, Gd3+, Pr3+, and Tb3+, which all behaved similarly, but this competition displayed unexpected features: lanthanide ions displaced Ca2+ with a moderate affinity and in a noncooperative way, and the pH dependence of this displacement was smaller than that of the Ca2+ binding to its own sites. Simultaneously, we directly measured the amount of Tb3+ bound to the ATPase relative to the amount of Ca2+ and found that Tb3+ ions only reduced significantly the amount of Ca2+ bound after a considerable number of Tb3+ ions had bound. Furthermore, when we tested the effect of Ca2+ on the amount of Tb3+ bound to the SR membranes, we found that the Tb3+ ions which bound at low Tb3+ concentrations were not displaced when Ca2+ was added at concentrations which saturated the Ca2+ transport sites. We conclude that the sites on SR ATPase to which lanthanide ions bind with the highest affinity are not the high affinity Ca2+ binding and transport sites. At higher concentrations, lanthanide ions did not appear to be able to replace Ca2+ ions and preserve the native structure of their binding pocket, as evaluated in rapid filtration measurements from the effect of moderate concentrations of lanthanide ions on the kinetics of Ca2+ dissociation. Thus, the presence of lanthanide ions slowed down the dissociation from its binding site of the first, superficially bound 45Ca2+ ion, instead of specifically preventing the dissociation of the deeply bound 45Ca2+ ion. These results highlight the need for caution when interpreting, in terms of calcium sites, experimental data collected using lanthanide ions as spectroscopic probes on SR membrane ATPase.  相似文献   

7.
We have purified unadhered human monocytes in sufficient quantities to prepare monocyte plasma membrane vesicles and study vesicular calcium transport. Monocytes were isolated from plateletpheresis residues by counterflow centrifugal elutriation. By combining this source and procedure, 7 x 10(8) monocytes of over 90% purity were obtained. The membranes, isolated on a sucrose step gradient, had an 18-fold enrichment in Na,K-ATPase, a 29-fold diminution of succinate dehydrogenase activity and were vesicular on transmission electron micrographs. The membrane vesicles loaded with oxalate accumulated calcium only in the presence of Mg and ATP. Calcium uptake did not occur if ATP was replaced by any of five nucleotide phosphates or if Mg was omitted. Calcium transport had a maximal velocity of 4 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.53 microM. The ionophore A23187 completely inhibited calcium accumulation while 5 mM sodium cyanide and 10 microM ouabain had no effect. A calcium-activated ATPase was present in the same plasma membrane vesicles. The calcium ATPase had a maximal velocity of 18.0 pmoles calcium/micrograms vesicle protein/min and a Km for calcium of 0.60 microM. Calcium-activated ATPase activity was absent if Mg was omitted or if (gamma - 32P) GTP replaced (gamma - 32P) ATP. Monocyte plasma membranes that were stripped of endogenous calmodulin by EGTA treatment showed a reduced level of calcium uptake and calcium ATPase activity. The addition of exogenous calmodulin restored the transport activity to that of unstripped monocyte plasma membranes. Thus, monocyte plasma membrane vesicles contain a highly specific, ATP-dependent calcium transport system and a calcium-ATPase with similar high calcium affinities.  相似文献   

8.
Ca++-uptake and Mg++-Ca++-dependent ATPase activity of skeletal muscle sarcoplasmic reticulum vesicles were reciprocally affected by increasing the oxalate concentration from 0 to 4 mM. At 0-0.1 mM oxalate approximately 17% of the calcium was removed by the vesicles from the medium while the ATPase activity was maximal (approximately 0.66 mumoles Pi mg-1 protein min-1). Between 0.1 to 0.2 mM oxalate the ATPase activity was reduced to one-fifth but the uptake rose sharply and 100% of the 45Ca++ was removed from the medium. The uptake was maintained at this level at oxalate concentrations greater than 0.4 mM but the ATPase activity remained inhibited. The kinetics of Ca++-uptake and ATPase activity were also differentially affected by oxalate. In the presence of oxalate, ruthenium red had only a very slight inhibitory effect on the calcium uptake. Addition of 0.1 mM EGTA removed 80% of the Ca++ from preloaded vesicles within 10 min. The formation of insoluble Ca-oxalate salt on the surface of the vesicle is suggested by these results. Calculations based on the Ksp of the calcium oxalate salt are presented to show its formation and the possible speciation of a Ca-oxalate complex which may affect the Ca++-uptake and ATPase activity.  相似文献   

9.
Calcium ion-regulated thin filaments from vascular smooth muscle.   总被引:5,自引:4,他引:1       下载免费PDF全文
Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 x 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g.  相似文献   

10.
The receptor for alpha 2-macroglobulin-proteinase complexes (alpha 2MR) was purified recently, and its binding of ligand was shown to depend on calcium ions (Moestrup, S. K., and Gliemann, J. (1989) J. Biol. Chem. 264, 15574-15577). This paper shows that the 440-kDa human placental alpha 2MR is a cysteine-rich glycoprotein with high affinity calcium binding sites important for receptor conformation; and the relationship between Ca2+ concentration and receptor function is presented. Autoradiography showed 45Ca2+ binding to the 440-kDa alpha 2MR blotted onto nitrocellulose from a sodium dodecyl sulfate-polyacrylamide gel. alpha 2MR immobilized on nitrocellulose in the absence of sodium dodecyl sulfate bound 45Ca2+ in the presence of 5 mM Mg2+, and 2-3 microM unlabeled Ca2+ was required to displace half of the bound 45Ca2+. The calcium concentration dependence showed upward concave Scatchard plots, and the number of binding sites was estimated to be approximately eight/alpha 2MR molecule. Binding of calcium did not change in the pH range 6.5-8.0 but decreased at lower pH values. Addition of Ca2+ to the medium was necessary for receptor binding of the alpha 2-macroglobulin-trypsin complex, and half of the maximal binding capacity was obtained with about 16 micrograms Ca2+ at pH 7.8. The requirement for calcium was increased at lower pH values, and half of the maximal 125I-alpha 2M-trypsin binding was obtained with about 30-40 microM Ca2+ at pH 7.0. Monoclonal antibodies were produced against alpha 2MR, and one of them distinguished between the Ca2(+)-occupied and nonoccupied forms. Like Ca2+, Sr2+ and Ba2+ elicited ligand binding affinity and competed for binding with 45Ca2+ in the order Ca2+ greater than Sr2+ greater than Ba2+. In conclusion, calcium ions bind specifically to alpha 2MR with high affinity, and it is likely that several sites on the alpha 2MR molecule have to be occupied to elicit the conformation recognizing the ligand.  相似文献   

11.
The purpose of the present work was to study the factors influencing calcium incorporation into a microsomal fraction prepared from the longitudinal smooth muscle of the guinea-pig ileum. Calcium incorporation required the presence of both ATP and Mg2+ and was unaffected by azide. It was enhanced by oxalate; this effect was pH dependent and it was maximal at pH 6.6. The relation between calcium uptake with oxalate and free Ca2+ concentration in the medium was represented by a curve with an optimum for Ca2+ equal to 3-10-5 M. The threshold concentration was comprised between 5-10-7 and 10-6 7. The optimum calcium uptake rate was 4.5 nmol Ca2+/mg protein per min. In the absence of oxalate, two distinct groups of binding sites were identified. Low affinity sites had a binding constant of 7-104 M-1 and a maximum binding capacity of 0.6-106 M-1 and a binding capacity of 33 nmol Ca2+/mg protein; their capacity was sensitive to pH changes. In the absence of oxalate, Ca2+ binding was depressed by Na+ with respect to K+ or choline. When the medium was supplemented with oxalate, the stimulation of 45Ca incorporation was barely detectable in the presence of choline+ and it was lower in a medium containing Na+ instead of K+. The subcellular distribution profiles of calcium incorporation with and without oxalate indicate the microsomal location of both activities. However, the oxalate-stimulated calcium uptake activity sedimented faster than the calcium binding activity. The subcellular distribution of marker enzyme actvities has been examined. The present results indicate that Ca2+ incorporations with and without oxalate are the result of two processes likely related to two different structures. The role of microsomal calcium uptake in excitation-contraction coupling and its modification by the activity of the sodium pump is discussed.  相似文献   

12.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

13.
We investigated the functional aspects of the interaction between the sarcoplasmic reticulum (SR) membranous Ca(2+)-ATPase and the non-ionic detergent dodecylmaltoside, using detergent concentrations allowing perturbation of the membrane but not its solubilization. At pH 7.5, the effects of dodecylmaltoside on ATPase activity and delipidation had previously been shown to resemble, in some respects, those of octa(ethylene glycol) monododecylether (C12E8), an appropriate detergent for ATPase studies. Our aim here was to explore the specific effects of dodecylmaltoside on the different steps in the ATPase catalytic cycle, which may owe their specificity to the difference between the polar head groups of dodecylmaltoside and C12E8. This was done at 20 degrees C, both at pH 6 in the absence of KCl and at pH 7.5 in the presence of 100 mM KCl, two conditions under which the characteristics of unperturbed ATPase have already been well defined. Preliminary estimation of dodecylmaltoside partition between water and SR membranes at pH 6 yielded a partition coefficient K close to 4 x 10(5) (ratio of the molar fraction of dodecylmaltoside in the lipid to that in the aqueous phase at a low detergent concentration, assuming that most of this detergent was present in the lipid phase). At near saturation of SR membranes, bound dodecylmaltoside was roughly equimolar with the constituent phospholipids. Non-solubilizing concentrations of dodecylmaltoside inhibited SR ATPase activity by up to 65-70% at pH 7.5, but not at pH 6, unlike the results of similar experiments with C12E8. The rates of the four main steps in the ATPase catalytic cycle were measured by fast kinetic techniques; they were similarly modified at both pH. Dodecylmaltoside slowed down both the rate of calcium-saturated ATPase phosphorylation and the rate of ATPase isomerization after phosphorylation, two steps which were not targets of perturbation by C12E8. The slowing down of the isomerization step by dodecylmaltoside might well explain why it inhibited overall ATPase activity at pH 7.5. In contrast to C12E8, dodecylmaltoside did not affect the dephosphorylation step, which was the main target of inhibition by C12E8 and the main rate-limiting step at pH 6. However, like C12E8, dodecylmaltoside accelerated the calcium binding-induced transition of nonphosphorylated ATPase. Another striking feature of the perturbation induced by dodecylmaltoside was that it significantly altered the binding of 45Ca2+ to the ATPase and the corresponding conformational changes. At pCa 5-5.5, it almost halved calcium binding to the ATPase but ATPase phosphorylation was unimpaired.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Effect of divalent cations bound to the phosphoenzyme intermediate of the ATPase of sarcoplasmic reticulum was investigated at 0 degree C and pH 7.0 using the purified ATPase preparations. Our previous study (Shigekawa, M., Wakabayashi, S., and Nakamura, H. (1983) J. Biol. Chem. 258, 14157-14161) indicated that 1 mol of the ADP-sensitive phosphoenzyme (E1P) formed from CaATP has 3 mol of high affinity binding sites for Ca2+, of which two are transport sites for calcium while the remainder is the acceptor site for calcium derived from the substrate, CaATP ("substrate site"). When incubated with a chelator of divalent cation, E1P formed from CaATP released all of its bound calcium to form a divalent cation-free phosphoenzyme. Evidence was presented that calcium dissociation from the substrate site was faster than that from the transport sites and primarily responsible for the ADP sensitivity loss of E1P induced by the chelator. Divalent cation-free phosphoenzyme was kinetically stable but when treated with divalent cations, it behaved similarly to the ADP-insensitive phosphoenzyme (E2P) which is the normal reaction intermediate of ATP hydrolysis. 45Ca bound at the substrate site on E1P formed from 45CaATP exchanged readily with nonradioactive ionized Ca2+ in the reaction medium whereas 45Ca at the transport sites on E1P was displaced only at a very slow rate which was almost the same as that for the phosphoenzyme hydrolysis. It was suggested that calcium at the transport sites on E1P formed from CaATP is released only after the rate-limiting conformational transition of the phosphoenzyme from E1P to E2P and that removal of calcium by a chelator from the substrate site facilitates this conformational transition, thereby allowing calcium bound at the transport sites to be released readily from the phosphoenzyme.  相似文献   

15.
The amount of 11s aggregate in phycocyanin, normally stimulated by hydrophobic forces, is dramatically increased by the presence of deuterium oxide. Proteins in which hydrophobic forces are not proposed as a mechanism for aggregation are unaffected by deuterium oxide. These observations are consistent with the lower critical micelle concentration reported for ionic detergents in deuterium oxide. Phycocyanin samples containing a majority of material sedimenting faster than 11s were also investigated in the presence of deuterium oxide with the following findings: the most rapidly sedimenting species in water buffer is 24s; in deuterium oxide more than 10% of the protein sediments at 67s and substantial amounts of other species with sedimentation coefficients larger than 24s are present. These large quantities of species sedimenting faster than 24s are found in deuterium oxide buffers from pD5.5 to 7.0. Sucrose-density-gradient studies in deuterium oxide at pD6.0 confirm the presence of large amounts of more rapidly sedimenting species. Spectrophotometric studies on fractions from the sucrose-density-gradient experiments indicate with the presence of higher aggregates a red shift of the visible-absorption maximum and an enhancement of the E(620)/E(280) ratio. Fluorescence-emission studies show a greater relative fluorescence efficiency for these higher aggregates and are consistent with the suggested enhancement of higher aggregates in deuterium oxide. The existence of phycocyanin aggregates of such a large size is suggested to be of importance in vivo, with phycocyanin playing a role as a structural protein.  相似文献   

16.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

17.
The latency of Micrococcus lysodeikticus membrane-bound Mg(2+)-adenosine triphosphatase (ATPase) is expressed by the ratio of its activity assayed in the presence of trypsin ("total") versus the activity assayed in absence of the protease ("basal"). By isolating membranes in the presence of variable concentrations of Mg(2+) (50 mM, 10 mM, or none) and by washing them with different Mg(2+)- and ethylenediaminetetraacetic acid-containing tris(hydroxymethyl)aminomethane-hydrochloride buffers (pH 7.5), we showed that the enzyme latency was dependent on the environmental concentration of this divalent metal ion. Mg(2+) bound to at least two classes of sites. The binding of Mg(2+) to low-affinity sites (saturation at approximately 40 mM external Mg(2+)) induced a high basal ATPase activity, whereas its binding to medium-affinity sites (saturation at about 2 mM Mg(2+)) correlated with low basal activity and a very high stimulation by trypsin. Membranes with tightly bound Mg(2+) (high affinity?) revealed an intermediate behavior for the latency of M. lysodeikticus ATPase. The Mg(2+)/Ca(2+) antagonism as activators of the membrane ATPase was not directly related to Mg(2+) binding by the membranes. The efficiency of the ATPase release from M. lysodeikticus membrane by 3 mM tris(hydroxymethyl)aminomethane-hydrochloride buffer (pH 7.5) was inversely proportional to the concentration of external and/or bound Mg(2+). Deoxycholate (DOC) (1%) solubilized the ATPase from all types of membrane. All the soluble ATPases behaved as Ca(2+)-ATPases, but the DOC-soluble fractions showed degrees of latency like those of the original membranes. The DOC-soluble ATPase preparation revealed a vesicular structure and complex protein patterns by sodium dodecyl sulfate gel electrophoresis. We propose that ATPase latency is modulated via a Mg(2+)-ATPase-membrane complex.  相似文献   

18.
Nucleotide binding to sarcoplasmic reticulum vesicles was investigated in the absence of calcium using both filtration and fluorescence measurements. Filtration assays of binding of radioactive nucleotides at concentrations up to 0.1 mM gave a stoichiometry of one ATP-binding site/sarcoplasmic reticulum ATPase molecule. When measured in the presence of calcium under otherwise similar conditions, ATPase velocity rose 4-8-fold (depending on pH and magnesium concentration) when the ATP concentration was increased from 1 microM to 0.1 mM. Binding of ATP and ADP enhanced the intrinsic fluorescence of sarcoplasmic reticulum ATPase, but AMP and adenosine did not affect it. Both filtration and fluorescence measurements showed that binding of metal-free ATP is independent of pH (Kd = 20-25 microM) but that the presence of magnesium induces pH dependence of the binding of the Mg.ATP complex (Kd = 10 microM at pH 6.0 and 1.5 microM at pH 8.0). Binding of metal-free ADP was pH-dependent but was not affected by magnesium. High magnesium concentrations inhibited nucleotide binding. These results suggest that ATP interacts with two different domains of Ca-ATPase that form the catalytic site. The first domain may bind the adenine moiety of the substrate, and the pH dependence of ADP binding suggests the participation of His683 in this region. The second domain of the catalytic site may bind the gamma-phosphate and the magnesium ion of the Mg.ATP complex and constitute the locus of the electrostatic interactions between the substrate and the enzyme.  相似文献   

19.
The membrane ATPase (EC 3.6.1.3) of Bacillus cereus was solubilized by a 'shock-wash' process and purified. The non-specific phosphatase contaminant was separated by glycerol density gradient centrifugation. The optimum temperature was 39.5 degrees C and the pH optimum at 7.5. On SDS-polyacrylamide gel electrophoresis two classes of subunits were observed in equal proportions with molecular weights of 70 K and 83 K. The effect of various compounds on the enzymatic activity was studied. The enzyme was insensitive to NaN3, oligomycin and to divalent cations, but was inhibited by citrate and oxalate.  相似文献   

20.
The properties of active or ATP-dependent calcium transport by islet-cell endoplasmic reticulum and plasma membrane-enriched subcellular fractions were directly compared. These studies indicate that the active calcium transport systems of the two membranes are fundamentally distinct. In contrast to calcium uptake by the endoplasmic reticulum-enriched fraction, calcium uptake by islet-cell plasma membrane-enriched vesicles exhibited a different pH optimum, was not sustained by oxalate, and showed an approximate 30-fold greater affinity for ionized calcium. A similar difference in affinity for calcium was exhibited by the Ca2+-stimulated ATPase activities which are associated with these islet-cell subcellular fractions. Consistent with the effects of calmodulin on calcium transport, calmodulin stimulated Ca2+-ATPase in the plasma membranes, but did not increase calcium-stimulated ATPase activity in the endoplasmic reticulum membranes. The physiological significance of the differences observed in calcium transport by the endoplasmic reticulum and plasma membrane fractions relative to the regulation of insulin secretion by the islets of Langerhans is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号