首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymes for galactose metabolism in Saccharomyces cerevisiae are encoded by three tightly linked genes. Data presented in this paper show that, in contrast to enzymes encoded by other gene clusters in yeast, these three enzymes are translated as separate polypeptides. First, two of the enzymes encoded by the cluster, galactokinase and uridylyl transferase. purified to near homogeneity, are separate polypeptides. Second, no precursor polypeptide-containing sequences common to both these enzymes is detectable in extracts from galactose-induced yeast cells. Third, no partial or absolute polarity of expression of the enzymes is observed in strains containing nonsense mutations in any of the genes of the cluster.Expression of the three galactose metabolic enzymes is co-ordinate, both during induction and during steady-state synthesis. This is true both for wild-type yeast strains and for strains carrying the long-term galactose adaptation mutation, gal3. In GAL3+ strains mutations within the galactose gene cluster have no effect on this co-ordinate expression. However, in gal3? strains, mutations in any of the genes of the cluster completely eliminate expression of the other two genes. These results suggest that the GAL3 gene product is responsible for inducer synthesis and that the actual inducer is an intermediate in galactose metabolism.  相似文献   

2.
3.
K Bidwell  A Landy 《Cell》1979,16(2):397-406
Integration of bacteriophage λ DNA into the chromosome of its E. coli host proceeds via a site-specific recombination between specific loci (att sites) on the phage and bacterial chromosomes. Infection of an E. coli host deleted for the primary bacterial att site results in λ integration with reduced efficiency at a number of different “secondary att sites” scattered around the E. coli chromosome. The first DNA sequence analysis of such a secondary att site, that occurring in the galT gene, is reported here, and several features pertinent to the mechanism of int-dependent site-specific recombination are discussed.Previous studies have shown that the crossover in int-dependent recombination must be somewhere within a 15 bp sequence (core region) common to the phage and primary bacterial att sites, as well as to the left and right prophage att sites which are at the junctures between prophage and host DNA. Comparison of the galT secondary prophage att sites with the primary prophage att sites allows determination of the analogous “core” region in the galT secondary att site. The 15 bp sequence thus identified shows an interrupted homology (8 out of 15) with the wild-type core. The extent and arrangement of nonhomologous bases allow precise placement of the crossover point for this recombination to the +4–+5 internucleotide bond of the core region.Sequences flanking the core region show no obvious homology with analogous sequences of the phage or primary bacterial att sites. Comparison of the galT left prophage att site with the analogous wild-type site is of particular interest and is discussed in relation to binding studies with purified int protein.  相似文献   

4.
An Escherichia coli strain deleted for the primary λ attachment site was lysogenized with λ at secondary sites. Some lysogens became mutants because of prophage insertion in the affected gene. Mutagenesis by phage λ is not random with respect to the gene affected: most mutants were pro, although certain other genes could be mutated at lower frequencies. In the case of several independent ilv and gal mutants, the sites of prophage insertion were in the same segment of the ilv region and galT gene respectively. The galT location may also be a preferred site for the insertion of DNAs other than prophage λ. Insertion of prophage λ within an operon can reduce the expression of operator-distal genes. A trpC λ insertion mutant expresses the operator-distal trpB function constitutively at a low level. This expression probably derives from a promoter located in the left arm of the prophage.  相似文献   

5.
6.
7.
8.
The lasB gene encoding a solvent-stable elastase from Pseudomonas aeruginosa (PAE) was isolated and heterologously expressed in Pichia pastoris, resulting in production of three heterogeneously glycosylated recombinant elastases (rPAEs). rPAEs showed higher solvent-stability and thermostability than native PAE, but these recombinant and native enzymes achieved similar values of specific activity (2393 U/mg and 2427 U/mg for rPAEs and the native one, respectively), apparent Km (2.55 and 2.48 g/l for rPAEs and the native one, respectively) and kcat (0.0489 and 0.0496/s for rPAEs and the native one, respectively) for casein hydrolysis. While rPAEs and their native counterpart displayed similar substrate specificity in bipeptide synthesis reactions in water-miscible organic solvents, the former gave higher synthesis rates and yields than the latter. The yields and rates of rPAEs-catalyzed bipeptide synthesis reactions substantially varied with the type of solvent, and dimethylsulfoxide (DMSO) was found to be more suitable for these reactions than methanol, ethanol, isopropanol, and n-butanol. The optimal reaction conditions for rPAEs-catalyzed Cbz-Ala-Phe-NH2 synthesis were the presence of 50% (v/v) DMSO, and at pH 8.0 and temperature 20–30 °C.  相似文献   

9.
Summary Conditions are described for the RNA-directed cell-free synthesis of the three galactose enzymes of Escherichia coli. Together with the DNA-directed synthesis described previously, this system permits the measurement of the three gene-products encoded by the gal operon as active enzymes synthesized in vitro in response to either gal-DNA or gal-RNA. The yield of enzyme is proportional to the amount of RNA added. Thus, the RNA-directed enzyme synthesis can serve as an assay system for functional mRNA. This test has been employed to determine the kinetics of synthesis and degradation of functional gal mRNA under the conditions of cell-free enzyme synthesis. The functional half-life of gal mRNA in this system is 6–7 minutes and is higher than expected from in vivo measurements.In contrast to the DNA-directed cell-free synthesis, the RNA-directed synthesis of the galactose enzymes is neither stimulated by cyclic adenosine-3:5-monophosphate nor by inducer.  相似文献   

10.
11.
Organic co-solvents can expand the use of enzymes in lignocellulose deconstruction through making substrates more soluble and thus more accessible. In choosing the most adequate co-solvent for feruloyl esterases, hydrolysis of methyl p-hydroxycinnamates by three pure enzymes (and a multi-enzyme preparation) was evaluated. Low concentrations of dimethylsulfoxide (DMSO) enhanced hydrolysis by two of the enzymes while at levels >20%, activity was reduced. DMSO also enhanced acetyl esterase-type activity of the enzymes. The co-solvent effect was different for each enzyme-substrate couple, indicating that other factors are also involved. Kinetic studies with a Talaromyces stipitatus feruloyl esterase showed low concentrations of dimethylsulfoxide enhanced the hydrolytic rate while Km also increased. Moreover, long-term incubation (96 h) of an Aspergillus niger feruloyl esterase in dimethylsulfoxide:water provided to the enzyme the ability to hydrolyze methyl p-coumarate, suggesting an active-site re-arrangement. Dimethylsulfoxide (10-30%) is proposed as an adequate co-solvent for feruloyl esterase treatment of water-insoluble substrates.  相似文献   

12.
Prior irradiation of non-lysogenic bacteria by ultraviolet light leads to an increase in the viability of infecting irradiated λ phage (ultraviolet reactivation). Similarly, u.v. irradiation of wild type or uvrD bacteria lysogenic for λcIind? increased the fraction of closed circular duplex phage DNA molecules formed after infection with u.v.-irradiated λ phage. The closed circular molecules isolated from the irradiated lysogens were shown to be free from u.v. damage by a spheroplast transfection assay. The increase of closed circular molecules is sufficient to explain the ultraviolet reactivation observed by the increase of viability of irradiated phage.In ultraviolet reactivation, damage must be erased on irradiated DNA molecules and the repair is independent of total replication of phage genomes, exchange of sister chromatids or recombination between phage genomes. Protein synthesis is necessary to increase the level of closed circular molecules of irradiated λ phage after irradiation of bacteria.  相似文献   

13.
14.
15.
The study aimed to test the hypothesis that ammonia production by Rhizobium bacteroids provides not only a source of nitrogen for growth but has a central regulatory role in maintaining the metabolic activity and functional integrity of the legume nodule. Production of ammonia in intact, attached nodules was interrupted by short-term (up to 3 days) exposure of the nodulated root systems of cowpea (Vigna unguiculata L. Walp cv Vita 3: Rhizobium CB 756) and lupin (Lupinus albus L. cv Ultra: Rhizobium WU 425) to atmospheres of argon:oxygen (80:20; v/v). Treatment did not affect nodule growth, levels of plant cell and bacteroid protein, leghaemoglobin content, or nitrogenase (EC 1.7.99.2) activity (acetylene reduction) but severely reduced (by 90%) synthesis and export of the major nitrogenous solutes produced by the two symbioses (ureides in cowpea, amides in lupin). Glutamine synthetase (EC 6.3.1.2) and NAD:glutamate oxidoreductase (EC I.4.1.2) were more or less stable to Ar:O2 treatment, but activities of the glutamine-utilizing enzymes, glutamate synthase (EC 2.6.1.53), asparagine synthetase (EC 6.3.5.4) (lupin only), and de novo purine synthesis (cowpea only), were all markedly reduced. Production and export of nitrogenous solutes by both symbioses resumed within 2 hours after transferring Ar:O2-treated plants back to air. In each case the major exported product of fixation after transfer was initially glutamine, reflecting the relative stability of glutamine synthetase activity. Subsequently, glutamine declined and products of its assimilation became predominant consistent with resurgence of enzymes for the synthesis of asparagine in lupin and ureides in cowpea. Enzymes not directly involved with either ammonia or glutamine assimilation (purine synthesis, purine oxidation, and carbon metabolism of both bacteroids and plant cells) also showed transient changes in activity following interruption of N2 supply. These data have been interpreted to indicate a far-reaching effect of the production of ammonia by bacteroids on a wide range of enzymes, possibly through control of protein turnover, rather than a highly specific effect of ammonia, or some product of its assimilation, on a few enzyme species.  相似文献   

16.
Among the set of mammalian DNA polymerases, DNA polymerases belonging to the X and Y families have a special place. The majority of these enzymes are involved in repair, including base excision repair and non-homologous end joining. Some of them play a crucial role during the specific process which is referred to as translesion synthesis (TLS). TLS intends for the cell surviving during the replication of damaged DNA templates. Additionally, specific activities of TLS-polymerases have to be useful for repair of double-stranded clustered lesions: if the synthesis is proceeded via base excision repair process, the role of DNA polymerases β or λ will be important. In this review we discussed the biochemical properties and functional relevance of X family DNA polymerases β and λ.  相似文献   

17.
The right operator in bacteriophage lambda vs326 has one-twentieth the in vitro binding affinity for repressor as λv+; for comparison λv3 has one-quarter the affinity of λv+. In vivo, both mutants constitutively express genes in the right operon. Both λv3 and λvs326 express gene O constitutively because they complement λimm434Oam? in a λ lysogen, vs, more efficiently than v3. The v3 allele in cis (but not in trans) to vs326 gives significantly greater phage yields in a λ lysogen than λvs326 alone, cro gene function, measured by arrest of exonuclease synthesis, suggested the following series of increasing degree of conatitutivity: v3, vs326, v3 vs326. λv2 vs326 forms plaques on lysogens that carry λcI857, but λv2 v3 does not. These results indicate that vs326, like v3, is an operator constitutive mutation but stronger in its effects. These mutants exemplify a uniform correlation between relative weakness of repressor binding and degree of constitutive gene expression.  相似文献   

18.
Five nucleotide sequence-specific deoxyribonucleases present in cell-free extracts of the filamentous cyanobacterium Nostoc PCC7524 have been purified and characterized. One of these enzymes, designated Nsp(7524)I cleaves at a new kind of nucleotide sequence i.e. 5'-PuCATG λ Py-3'. The other four restriction enzymes in this organism, designated Nsp(7524)II, Nsp(1524)III, Nsp(1524)IV and Nsp(1524)V, are isoschizomers of enzymes which have been previously described. The cleavage site of Nsp(1524)ll which is an isoschizomer of SduI was determined.  相似文献   

19.
Non-diffusible genetic elements in bacteriophage λ DNA replication and λ prophage excision have been analyzed by the DNA-cutting assay of Freifelder and Kirschner (1971) and Freifelder et al. (1972). The mutant ti12, which affects a unique site for replication in or near the origin of replication (Dove et al., 1971), makes λ DNA partially refractory to replicative DNA-cutting. RNA synthesis in the vicinity of the origin, of replication seems to control the susceptibility of λ DNA to replicative DNA-cutting (Dove et al., 1969). Analogously, RNA synthesis in the vicinity of the left-hand prophage terminus seems to control excisional DNA-cutting of derepressed λ DNA, as predicted by the studies of Davies et al. (1972). These physical studies confirm previous genetic analyses and imply that the elements involved act at a very early stage in replication and in excision.  相似文献   

20.
Gottesman et al. (1974) detected a new DNAase in Escherichia coli infected with λ reverse, a recombination-proficient substitution mutant of phage λ which is deleted for the λ recombination genes. We have purified this enzyme, using the procedure developed for the purification of exonuclease VIII (Kushner et al., 1974), a DNAase produced by E. coli K-12 strains carrying sbcA? mutations. The λ reverse exonuclease (Exoλrev) is identical to exonuclease VIII by several criteria. The two enzymes elute at similar salt concentrations from DEAE-cellulose and DNA-cellulose; sediment at the same velocity in glycerol gradients, corresponding to a molecular weight of about 1.4 × 105; migrate at the same RF in sodium dodecyl sulfate/polyacrylamide gels, indicating a polypeptide molecular weight of 1.4 × 105; exhibit maximum activity at 20 mm-Mg2+ and pH 8 to 9; and are much more active on double-stranded DNA than on heat-denatured DNA. Both enzymes are rendered sedimentable by antiserum against Exoλrev. This evidence supports the hypothesis that the non-λ DNA substitution in λ reverse includes recE, the structural gene for exonuclease VIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号