首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
We investigated the role of mitochondrial reactive oxygen species (ROS) in the response of macrophages to lipopolysaccharide (LPS) using RAW 264.7 cells and their ρ(o) cells lacking mitochondria. Mitochondrial density, respiratory activity and related proteins in ρ(o) cells were significantly lower than those in RAW cells. LPS rapidly stimulated mitochondrial ROS prior to cytokine secretion, such as TNF-α and IL-6, from RAW 264.7 cells by activating the MAPK pathway, while the response was attenuated in ρ(o) cells. Exposure of ρ(o) cells to H(2)O(2) partially restored the secretion of cytokines induced by LPS. These results suggest that mitochondrial density and/or the respiratory state contribute to intracellular oxidative stress, which is responsible for the stimulation of LPS-induced MAPK signaling to enhance cytokine release from macrophages.  相似文献   

3.
We recently showed that lycopene inhibited lipopolysaccharide (LPS)-induced productions of nitric oxide (NO) and interleukin-6 (IL-6) in murine RAW264.7 macrophages by mechanisms related to inhibition of ERK and nuclear factor-κB. Since the assembly of Toll-like receptor 4 (TLR4) in lipid rafts is a key element in LPS induced signaling, we investigated whether this process would be influenced by lycopene. We found that pretreatment of RAW264.7 cells with lycopene inhibited LPS-induced recruitment of TLR4 into fractions — enriched with lipid raft marker. By the methods of immunoprecipitation and immunoblotting, we also found that lycopene inhibited the subsequent formation of the complex of TLR4 with its adaptors including myeloid differentiation primary-response protein 88 and TIR domain–containing adaptor-inducing IFN-β. We also found that the lycopene induced inhibition was associated with reduced formation of reactive oxygen species (ROS), which was an upstream mechanism for the effects of lycopene, because treating the cells with the antioxidant N-acetyl-l-cysteine and NADPH oxidase inhibitor diphenyleneiodonium chloride significantly inhibited LPS-induced recruitment of TLR4 into lipid raft-like domains as well as the production of proinflammatory molecule NO and IL-6. Thus, our findings suggest that lycopene may prevent LPS-induced TLR4 assembly into lipid rafts through reducing intracellular ROS level.  相似文献   

4.
Several natural flavonoids have been demonstrated to perform some beneficial biological activities, however, higher-effective concentrations and poor-absorptive efficacy in body of flavonoids blocked their practical applications. In the present study, we provided evidences to demonstrate that flavonoids rutin, quercetin, and its acetylated product quercetin pentaacetate were able to be used with nitric oxide synthase (NOS) inhibitors (N-nitro-L-arginine (NLA) or N-nitro-L-arginine methyl ester (L-NAME)) in treatment of lipopolysaccharide (LPS) induced nitric oxide (NO) and prostaglandin E2 (PGE2) productions, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expressions in a mouse macrophage cell line (RAW 264.7). The results showed that rutin, quercetin, and quercetin pentaacetate-inhibited LPS-induced NO production in a concentration-dependent manner without obvious cytotoxic effect on cells by MTT assay using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide as an indicator. Decrease of NO production by flavonoids was consistent with the inhibition on LPS-induced iNOS gene expression by western blotting. However, these compounds were unable to block iNOS enzyme activity by direct and indirect measurement on iNOS enzyme activity. Quercetin pentaacetate showed the obvious inhibition on LPS-induced PGE2 production and COX-2 gene expression and the inhibition was not result of suppression on COX-2 enzyme activity. Previous study demonstrated that decrease of NO production by L-arginine analogs effectively stimulated LPS-induced iNOS gene expression, and proposed that stimulatory effects on iNOS protein by NOS inhibitors might be harmful in treating sepsis. In this study, NLA or L-NAME treatment stimulated significantly on LPS-induced iNOS (but not COX-2) protein in RAW 264.7 cells which was inhibited by these three compounds. Quercetin pentaacetate, but not quercetin and rutin, showed the strong inhibitory activity on PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS co-treated RAW 264.7 cells. These results indicated that combinatorial treatment of L-arginine analogs and flavonoid derivates, such as quercetin pentaacetate, effectively inhibited LPS-induced NO and PGE2 productions, at the same time, inhibited enhanced expressions of iNOS and COX-2 genes.  相似文献   

5.
Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.  相似文献   

6.
Interleukin-4 (IL-4) and interleukin-10 (IL-10) were evaluated for their ability to inhibit the production of nitric oxide (NO) by interferon-gamma (IFN-gamma)- or lipopolysaccharide (LPS)-activated murine macrophages (RAW 264.7 and J774.2). Macrophages pre-treated with IL-4 and then stimulated with IFN-gamma or LPS showed significant inhibition in their ability to produce NO as measured by nitrite production. Simultaneous treatment of IL-4 pre-incubated cells with IFN-gamma and LPS together augmented nitrite accumulation. On the other hand, similar exposures of the macrophages to IL-10 followed by IFN-gamma or LPS treatments resulted in significantly increased NO production. Thus IL-10 failed to suppress IFN-gamma or LPS-induced NO production and showed opposite effects in these experiments to IL-4. We conclude that the two lymphokines have differing roles in the control of production of NO and might act to control the secretion of nitric oxide in vivo.  相似文献   

7.
It is known that lipopolysaccharide (LPS)-induced monocyte chemotactic protein (MCP)-1 secretion from tissues recruits monocytes from the circulation, but the mechanism of the LPS-induced MCP-1 production in skeletal muscle is largely unexplained. To clarify the effect of LPS on MCP-1 production in skeletal muscle cells, C2C12 cells from a mouse skeletal muscle cell line, and RAW 264.7 cells from a mouse macrophage cell line, were used to assess production of LPS-induced MCP-1, nitric oxide (NO) and interferon (IFN)-beta. In addition, we evaluated inducible NO synthases (iNOS) mRNA expression using RT-PCR, and cell surface expression of CD14 and toll-like receptor (TLR) 4 using flow cytometry. In C2C12 cells, LPS stimulation increased MCP-1 production (p < 0.01), but combined treatment with LPS and NO inducer, diethylammonium (Z)-1-(N,N-diethylamino) diazen-1-ium-1,2-diolate (NONOate), significantly inhibited its production (p < 0.01). LPS stimulation neither induced production of NO nor of IFN-beta, which is an NO inducer. Recombinant IFN-beta stimulation, on the other hand, enhanced LPS-induced NO production (p < 0.01). Interestingly, we found that surface expression of CD14, which regulates IFN-beta production, in C2C12 cells was much lower than that in RAW 264.7 cells, although TLR4 expression on C2C12 cells was similar to that on RAW 264.7 cells. These data suggest that the reduced NO production in response to LPS may depend on low expression of CD14 on the cell surface of skeletal muscle, and that it may enhance LPS-induced MCP-1 production. Together, these functions of skeletal muscle could decrease the risk of bacterial infection by recruitment of monocytes.  相似文献   

8.
Flavonoids including the aglycones, hesperetin (HT; 5,7,3'-trihydroxy-4'-methoxy-flavanone), and naringenin (NE; 5,7,4'-trihydroxy flavanone) and glycones, hesperidin (HD; 5,7,3'-trihydroxy-4'-methoxy-flavanone 7-rhamnoglucoside) and naringin (NI; 5,7,4'-trihydroxy flavanone 7-rhamno glucoside), were used to examine the importance of rutinose at C7 on the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced nitric oxide production in macrophages. Both HT and NE, but not their respective glycosides HD and NI, induced heme oxygenase 1 (HO-1) protein expression in the presence or absence of LPS and showed time and dose-dependent inhibition of LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW264.7, J774A.1, and thioglycolate-elicited peritoneal macrophages. Additive inhibitory effect of an HO-1 inducer hemin and NE or NI on LPS-induced NO production and iNOS expression was identified, and HO enzyme inhibitor tin protoporphyrin (SnPP) attenuated the inhibitory effects of HT, NE, and hemin on LPS-induced NO production. Both NE and HT showed no effect on iNOS mRNA and protein stability in RAW264.7 cells. Removal of rutinose at C7 of HD and NI by enzymatic digestion using hesperidinase (HDase) and naringinase (NIase) produce inhibitory activity on LPS-induced NO production, according to the production of the aglycones, HT and NE, by high-performance liquid chromatography (HPLC) analysis. Furthermore, the amount of NO produced by LPS or lipoteichoic acid (LTA) was significantly reduced in HO-1-overexpressing cells (HO-1/RAW264.7) compared to that in parental cells (RAW264.7). Results of the present study provide scientific evidence to suggest that rutinose at C7 is a negative moiety in flavonoid inhibition of LPS-induced NO production, and that HO-1 is involved in the inhibitory mechanism of flavonoids on LPS-induced iNOS and NO production.  相似文献   

9.
A seco-triterpenoid, sentulic acid (SA) isolated from Sandoricum koetjape Merr attenuated nitric oxide (NO) production following co-stimulation with lipopolysaccharide (LPS) and interferon-gamma (IFNγ) in RAW264.7 macrophage cells. The mRNA expression levels of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), IFNγ, interleukin (IL)-6, and IL-12 in LPS/IFNγ co-stimulated RAW264.7 cells also decreased upon SA treatment. To determine the molecular mechanisms underlying the inhibitory effect of SA on LPS/IFNγ-induced NO production in RAW264.7 cells, we further analyzed Toll-like receptor (TLR) signaling by western blotting. The expression of TLR4 and IFN signaling molecules in cells treated with SA was significantly suppressed compared to that in cells not treated with SA. Additionally, SA inhibited the binding of LPS to the TLR4 receptor in RAW264.7 cells stimulated with Alexa Fluor 488-conjugated LPS. These results demonstrate that SA attenuates NO production after LPS/IFNγ co-stimulation in RAW264.7 cells by inhibiting the binding of LPS to TLR4. Our findings suggest that SA is beneficial for the treatment of inflammatory diseases.  相似文献   

10.
11.
12.
Production of nitric oxide (NO) in response to bacterial lipopolysaccharide (LPS) was investigated using cultures of mouse peritoneal exudate cells (PEC) and the macrophage cell line RAW264.7. In the presence of anti-(interferon-gamma) (IFN-gamma), NO production was markedly suppressed in the PEC culture but not in the RAW264.7 culture. In the PEC culture, LPS induced both IFN-gamma production and activation of IFN response factor-1, which leads to the gene expression of inducible NO synthase, but neither was induced in the culture of RAW264.7 cells. In addition to anti-(IFN-gamma), antibodies against interleukin (IL)-12 and IL-18 showed a suppressive effect on LPS-induced NO production in the PEC culture, and these antibodies in synergy showed strong suppression. Stimulation of the PEC culture with IL-12 or IL-18 induced production of IFN-gamma and NO, and these cytokines, in combination, exhibited marked synergism. Stimulation of the culture with IFN-gamma induced production of NO, but not IL-12. The macrophage population in the PEC, prepared as adherent cells, responded well to LPS for IL-12 production, but weakly for production of IFN-gamma and NO. The macrophages also responded well to IFN-gamma for NO production. For production of IFN-gamma by stimulation with LPS or IL-12 + IL-18, nonadherent cells were required in the PEC culture. Considering these results overall, the indirect pathway, through the production of intermediates (such as IFN-gamma-inducing cytokines and IFN-gamma) by the cooperation of macrophages with nonadherent cells, was revealed to play the main role in the LPS-induced NO production pathway, as opposed to the direct pathway requiring only a macrophage population.  相似文献   

13.
BackgroundCombination drug therapy has become an effective strategy for inflammation control. The anti‑inflammatory capacities of silibinin and thymol have each been investigated on its own, but little is known about the synergistic anti-inflammatory effects of these two compounds.PurposeThis study aims to investigate the synergistic anti-inflammatory effects of silibinin and thymol when administered in combination to lipopolysaccharide (LPS)-induced RAW264.7 cells.MethodsRAW264.7 cells were pre-treated with silibinin and thymol individually or in combination for 2 h before LPS stimulation. Cell viability was detected by the MTT assay. Nitric oxide (NO) production was measured by Griess reagent. Reactive oxygen species (ROS) was evaluated by 2’,7’-dichlorofluorescein-diacetate. ELISA was used to detect tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Western blot was performed to analyse the protein expression of LPS-induced RAW264.7 cells.ResultsWe observed a synergistic anti-inflammatory effect of silibinin and thymol when administered in combination to LPS-induced RAW264.7 cells. Silibinin combined with thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) had more potent effects on the inhibition of NO, TNF-α, and IL-6 than those exerted by individual administration of these compounds in LPS-induced RAW264.7 cells. The combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) strongly inhibited ROS and cyclooxygenase-2 (COX-2). More importantly, the combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) was also successful in inhibiting nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activities. Our results suggest that the synergistic anti-inflammatory effects of silibinin with thymol were associated with the inhibition of NF-κB and MAPK signalling pathways.ConclusionThe combination of silibinin and thymol (40 μM and 120 μM, respectively, with the molar ratio 1:3) could inhibit inflammation by suppressing NF-κB and MAPK signalling pathways in LPS-induced RAW264.7 cells.  相似文献   

14.
Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulphated polysaccharide with a wide variety of biological activities including anti-tumour, antioxidant and immuno-modulating activities. In this study, we examined the effect of porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 cells. Although no significant activity of porphyran to induce NO or tumour necrosis factor-α (TNF-α) production in RAW264.7 cells was observed at the concentration range tested (10-500 μg/ml), it was found for the first time that porphyran inhibited NO production and expression of inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). In the presence of 500 μg/ml porphyran, NO production and expression of iNOS in LPS-treated RAW264.7 cells were completely suppressed. On the other hand, porphyran showed only a marginal effect on the secretion of TNF-α from LPS-stimulated RAW264.7 cells. Electrophoretic mobility shift assay (EMSA) using infrared dye labelled oligonucleotide with nuclear factor-κB (NF-κB) consensus sequence suggested that porphyran inhibited the LPS-induced NF-κB activation. The LPS-inducible nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also inhibited by the pre-treatment with porphyran. Our results obtained in in vitro analysis suggest that porphyran suppresses NO production in LPS-stimulated macrophages by the blocking of NF-κB activation.  相似文献   

15.
The involvement of retinoblastoma protein-interacting zinc finger 1 (RIZ1), a tumor suppressor, in lipopolysaccharide (LPS)-induced inflammatory responses was investigated by using RAW 264.7 macrophage-like cells. LPS significantly augmented the expression of RIZ1 and the augmentation was mediated by the activation of nuclear factor (NF)-κB and Akt. The silencing of RIZ1 with the siRNA led to the inactivation of NF-κB in response to LPS. Moreover, the RIZ1 silencing caused the down-regulation of p53 activation and a p53 pharmacological inhibitor attenuated the RIZ1 expression. LPS-induced tumor necrosis factor-α and interleukin-6 production was prevented by RIZ1 siRNA or a p53 pharmacological inhibitor. Therefore, RIZ1 was suggested to augment LPS-induced NF-κB activation in collaboration with p53 and enhance the production of proinflammatory cytokines in response to LPS.  相似文献   

16.

Background

Ligularia fischeri (common name Gomchwi) is known for its pharmaceutical properties and used in the treatment of jaundice, scarlet-fever, rheumatoidal arthritis, and hepatic diseases; however, little is known about its anti-inflammatory effect. In this study the influence of blanching and pan-frying on the anti-inflammatory activity of Ligularia fischeri (LF) was evaluated.

Results

Fresh LF and cooked LF showed no significant effect on the viability of macrophages after 24 h incubation. Fresh LF was found to be the most potent inhibitor of nitric oxide (NO) production at 100 μg/ml, while pan-fried LF showed little inhibitory effect on lipoloysaccharide (LPS) stimulated murine machrophage RAW264.7 cells. In contrast with its effect on NO production, pan-fried LF showed significant attenuation of the expression of inducible nitiric oxide synthase (iNOS) compared with fresh LF. In the cooking method of LF, PGE2 production was not affected in the LPS-induced RAW 264.7 cells. In LPS-induced RAW 264.7 cells, pretreatment by fresh and cooked LF increased COX2 mRNA expression. The 3-O-caffeoylquinic acid content of blanching and pan-frying LF increased by 4.92 and 9.7 fold with blanching and pan-frying respectively in comparison with uncooked LF.

Conclusions

Regardless of the cooking method, Ligularia fischeri exhibited potent inhibition of NO production through expression of iNOS in LPS-induced RAW264.7 cells.  相似文献   

17.
The mechanism of interleukin (IL)-10-mediated inhibition of tumor necrosis factor (TNF)-alpha production was studied by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. IL-10 inhibited TNF-alpha production transiently at an early stage after LPS stimulation. IL-10 inhibited the activation of nuclear factor (NF)-kappaB, p38 and stress-activated protein kinase (SAPK) in LPS-stimulated RAW 264.7 cells. Although the level of MyD88 protein increased in response to LPS, IL-10 prevented the LPS-induced MyD88 augmentation. There was no significant difference in the MyD88 mRNA expression between the cells pretreated with or without IL-10 in response to LPS. Therefore, IL-10 was suggested to inhibit LPS-induced TNF-alpha production via reduced MyD88 expression.  相似文献   

18.
Magnesium Isoglycyrrhizinate (MgIG), a novel molecular compound extracted from licorice root, has exhibited greater anti-inflammatory activity and hepatic protection than glycyrrhizin and β-glycyrrhizic acid. In this study, we investigated the anti-inflammatory effect and the potential mechanism of MgIG on Lipopolysaccharide (LPS)-treated RAW264.7 cells. MgIG down-regulated LPS-induced pro-inflammatory mediators and enzymes in LPS-treated RAW264.7 cells, including TNF-α, IL-6, IL-1β, IL-8, NO and iNOS. The generation of reactive oxygen species (ROS) in LPS-treated RAW264.7 cells was also reduced. MgIG attenuated NF-κB translocation by inhibiting IKK phosphorylation and IκB-α degradation. Simultaneously, MgIG also inhibited LPS-induced activation of MAPKs, including p38, JNK and ERK1/2. Taken together, these results suggest that MgIG suppresses inflammation by blocking NF-κB and MAPK signaling pathways, and down-regulates ROS generation and inflammatory mediators.  相似文献   

19.
Tetracyclines (doxycycline and minocycline) augmented (one- to twofold) the PGE2 production in human osteoarthritis-affected cartilage (in the presence or absence of cytokines and endotoxin) in ex vivo conditions. Similarly, bovine chondrocytes stimulated with LPS showed (one- to fivefold) an increase in PGE2 accumulation in the presence of doxycycline. This effect was observed at drug concentrations that did not affect nitric oxide (NO) production. In murine macrophages (RAW 264.7) stimulated with LPS, tetracyclines inhibited NO release and increased PGE2 production. Tetracycline(s) and L-N-monomethylarginine (L-NMMA) (NO synthase inhibitor) showed an additive effect on inhibition of NO and PGE2 accumulation, thereby uncoupling the effects of tetracyclines on NO and PGE2 production. The enhancement of PGE2 production in RAW 264.7 cells by tetracyclines was accompanied by the accumulation of both cyclooxygenase (COX)-2 mRNA and cytosolic COX-2 protein. In contrast to tetracyclines, L-NMMA at low concentrations (< or = 100 microM) inhibited the spontaneous release of No in osteoarthritis-affected explants and LPS-stimulated macrophages but had no significant effect on the PGE2 production. At higher concentrations, L-NMMA (500 microM) inhibited NO release but augmented PGE2 production. This study indicates a novel mechanism of action of tetracyclines to augment the expression of COX-2 and PGE2 production, an effect that is independent of endogenous concentration of NO.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号