首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Native small ribosomal subunits from rabbit reticulocytes contain all initiation factors necessary for the formation of the mRNA-containing 48S pre-initiation complex. The complex formed in the presence of Met-tRNAf and 125I-labelled globin mRNA was cross-linked with diepoxybutane, and the covalent mRNA-protein complexes were isolated under denaturating conditions. The proteins of the covalent complex were identified as the 110, 95 and 66/64 kDa subunits of eIF-3. In addition, the 24 kDa cap binding protein and the ribosomal proteins S1, S3/3a, S6 and S11 were found covalently linked to the mRNA. Ribosomal proteins S3/3a and S6 were also involved in the ribosomal mRNA-binding domain of reticulocyte polysomes.  相似文献   

2.
The 220 kDa β-subunit of erythroid cell spectrin is a potent inhibitor of protein synthesis in lysates from rabbit reticulocytes. On the basis of weight of protein added to a lysate reaction mixture, it has about half the inhibitory activity of highly purified heme-regulated eIF-2 kinase. Inhibition appears to be at the level of peptide initiation but does not involve a kinase that phosphorylates eIF-2 on its -subunit.  相似文献   

3.
The 25 kDa mRNA cap binding protein can be purified in a partially phosphorylated state and the extent of its phosphorylation appears to be regulated during heat shock and mitosis in mammalian cells. We demonstrated that a nonabundant serine protein kinase activity exists in rabbit reticulocytes that phosphorylates the 25 kDa cap binding protein in both the free (eIF-4E) and complexed (eIF-4F) state. This kinase was not inhibited by the cAMP-dependent protein kinase inhibitory peptide IAAGRTGRRNAIHDILVAA, did not phosphorylate S6 ribosomal protein, did not phosphorylate p220 of eIF-4F as protein kinase C does and no other substrates for this kinase were apparent in reticulocyte ribosomal salt wash. The molecular identity of this kinase, the specific site(s) of eIF-4E that it phosphorylates and its in vivo regulatory role remain to be studied.  相似文献   

4.
Characterization of the Drosophila ortholog of mouse eIF-3p48/INT-6.   总被引:2,自引:0,他引:2  
The mouse mammary tumor virus (MMTV) has been shown to integrate frequently into INT-6 in MMTV-induced mouse mammary tumors. The INT6 gene has been highly conserved through evolution and has recently been shown to encode the p48 component of the eucaryotic translation initiation factor 3 (eIF-3) complex. We report here the isolation of the Drosophila eIF-3p48/INT-6. The gene comprises three exons within 1.8kb of genomic DNA located at cytogenetic position 73C2 in the Drosophila genome. The 1.5kb eIF-3p48/INT-6 RNA species encodes a protein composed of 364 amino-acid residues whose sequence is 71% similar to that of the mouse/human eIF-3/INT-6 amino-acid sequence. eIF-3p48/INT-6 RNA is expressed throughout development in Drosophila and the encoded protein is associated with the microsomal subcellular fraction.  相似文献   

5.
Changes in the extent of phosphorylation of the 25 kDa subunit of eIF-4F occur during several major biological events including mitosis and heat shock in mammalian cells and shortly after fertilization of sea urchin (Lytechinus pictus) eggs. In vitro phosphorylation studies using highly purified protein kinases demonstrated that the 220 kDa subunit of eIF-4F was phosphorylated by cAMP dependent protein kinase, protein kinase C and probably to a lesser extent by cGMP dependent protein kinase. In addition, eIF-4A was readily phosphorylated by cAMP and cGMP dependent protein kinases whereas p48 of eIF-4F was not. The effect of these phosphorylation events on eIF-4F function, its assembly or disassembly, susceptibility to viral initiated proteolysis or the ability of p25 to be phosphorylated at serine-53 remain to be investigated.  相似文献   

6.
7.
A cell-free protein synthesis system has been prepared from embryonic chick muscle; this system is dependent on initiation factor eukaryotic initiation factor 3 (eIF-3) and mRNA for efficient translation. Highly purified chick muscle eIF-3 has been fractionated into "core" and discriminatory components. In the presence of core eIF-3 from chick muscle or rabbit reticulocytes, myosin heavy chain mRNA is translated less efficiently than globin mRNA present in an equimolar concentration. When the discriminatory components are added to core eIF-3 from either source, myosin mRNA is translated with a greater efficiency. Thus, chick muscle eIF-3 contains components which allow it to recognize and stimulate specifically the translation of myosin mRNA in a muscle cell-free protein synthesis system.  相似文献   

8.
Characterization of the 46,000-dalton subunit of eIF-4F   总被引:5,自引:0,他引:5  
Three protein synthesis initiation factors, eukaryotic initiation factor (eIF)-4A, -4B, and -4F are required for the ATP-dependent binding of mRNA to the ribosome. To extend the characterization of the eIF-4A-like subunit of eIF-4F, a cDNA clone encoding eIF-4A has been isolated from a rabbit liver cDNA library and sequenced. The clone is almost full length for the coding region and complete for the 3' noncoding region. The sequence of the rabbit cDNA has been compared to the sequence of the two similar, but not identical, genes and cDNAs encoding mouse eIF-4A (termed eIF-4AI and eIF-4AII). The rabbit cDNA sequence is very similar to the mouse eIF-4AI genomic and liver cDNA sequence with 100% identity at the amino acid level and 90% identity at the nucleotide level within the protein coding region; however, there is very little similarity in the 3' noncoding region. Amino acid sequencing of purified rabbit reticulocyte eIF-4A protein indicates that it is eIF-4AI (encoded by the eIF-4AI gene and cDNA) and none of the amino acid residues sequenced are in disagreement with those predicted from the mouse liver or rabbit liver cDNA sequences. Subsequently, we have analyzed the p46 subunit of eIF-4F, a three subunit protein whose molecular weights have been estimated by sodium dodecyl sulfate gel electrophoresis to be 220,000, 46,000 and 24,000. The p46 subunit has physical properties similar to eIF-4A. This subunit was isolated from rabbit reticulocyte eIF-4F and sequenced chemically. Our results indicate that this peptide is a mixture of eIF-4AI and eIF-4AII in an approximate ratio of 4 to 1, respectively. No eIF-4AII was observed in our rabbit reticulocyte eIF-4A preparation. Therefore we have concluded that either the eIF-4AI and the eIF-4AII proteins were resolved from each other in the purification of rabbit reticulocyte eIF-4A or that eIF-4AII preferentially associates with the p220 and p24 subunits of eIF-4F. Evidence favoring the latter possibility is discussed.  相似文献   

9.
Eukaryotic initiation factor-4E (eIF-4E) binds to the cap structure of eukaryotic mRNAs and is a component of the cap-binding protein complex eIF-4F. eIF-4E is present in cells in limiting concentrations and is phosphorylated both in vivo and in vitro by protein kinase C (PKC). Recently, eIF-4E has been implicated as an intracellular transducer of extracellular growth signals; microinjection of recombinant eIF-4E into quiescent NIH 3T3 cells induced DNA synthesis. In the present report, the mitogenic activity of eIF-4E was examined after coinjection with PKC. Recombinant eIF-4E was phosphorylated by PKC at the same amino acid that is phosphorylated in cultured cells and reticulocytes in response to phorbol ester. At limiting concentrations of eIF-4E, coinjection with PKC induced a fivefold increase in the mitogenic activity of eIF-4E. Injection of PKC alone or coinjection of eIF-4E with cAMP-dependent protein kinase (PKA) or the Raf protein had no effect. These results suggest that the mitogenic activity of eIF-4E is enhanced by PKC-specific phosphorylation and that phosphate addition is a rate-limiting step in eIF-4E activity.  相似文献   

10.
Addition of L-pyrroline-5-carboxylic acid to reticulocyte lysates inhibits protein synthesis and induced phosphoproteins of 25 and 14 kDa. The 25 kDa phosphoprotein had the same Mr and pI as phosphorylated eIF-4E. Incubation of lysates with L-pyrroline-5-carboxylic acid did not alter the crosslinking of eIF-4E to reovirus mRNA caps. These results suggest that modifications of the translational apparatus other than eIF-4E phosphorylation may mediate the inhibitory effect seen with L-pyrroline-5-carboxylic acid and/or that phosphorylation of eIF-4E may effect functions subsequent to its interaction with the mRNA cap such as protein-protein interactions with other cap-specific translation factors.  相似文献   

11.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

12.
Eukaryotic initiation factor eIF-2B plays an important role in translation regulation and has been suggested to be implicated in the increased protein synthesis promoted in response to growth factors. We have used primary cultured neurons to delineate the signaling pathways by which insulin-like growth factor-1 (IGF-1), which plays a critical role in the survival of neuronal cells, promotes eIF-2B and protein synthesis activation. Treatment of cortical neurons with IGF-1 (100 ng/ml) for 30 min stimulates [(3)H]methionine incorporation, and a parallel increase in eIF-2B activity was observed. Wortmannin and LY294002 reversed both effects, indicating that phosphatidylinositol 3-kinase mediates IGF-1-induced protein synthesis and eIF-2B activation. IGF-1 induced glycogen synthase kinase-3 (GSK-3) inactivation in a phosphatidylinositol 3-kinase-dependent fashion because it is inhibited by wortmannin and LY294002. By using GSK-3 immunoprecipitated from untreated and IGF-1-treated cells, we demonstrate the phosphorylation of eIF-2B coincident with its inactivation. The treatment of cortical neurons with IGF-1 also promoted the activation of mitogen-activated protein kinase (MAPK). The MAPK-activating kinase (MEK) inhibitor PD98059 inhibited MAPK activation and reversed IGF-1-induced protein synthesis and eIF-2B activation. These findings suggest that IGF-1-induced eIF-2B activation on neurons is promoted through phosphatidylinositol 3-kinase and GSK-3 kinase, and we report an IGF-1-induced MEK/MAPK activation pathway implicated in eIF-2B activation.  相似文献   

13.
S R Green  A Spalding  T Ashford  C G Proud  M F Tuite 《Gene》1991,108(2):253-258
A human eIF-2 alpha cDNA (encoding alpha-subunit of the eukaryotic initiation factor-2) was expressed under the control of the galactose-regulated GAL1, 10 promoter, in Saccharomyces cerevisiae, in order to study the possible interactions of human eIF-2 alpha with the yeast protein synthesis apparatus. Isoelectric focusing coupled with Western-blot analysis demonstrated that the human eIF-2 alpha subunit synthesized in yeast under a variety of growth conditions was detected as two bands which co-migrated with the phosphorylated and unphosphorylated forms of rabbit eIF-2 alpha, suggesting covalent modification in vivo. Cell fractionation studies further demonstrated that the synthesised human eIF-2 alpha protein, though present in the cytoplasm, was largely associated with the yeast ribosomes, but could be removed from these by washing with 0.3 M KCl. This possible association of the synthesised human subunit into a three-subunit (alpha, beta and gamma) eIF-2 complex was further examined by partial purification of the yeast eIF-2 complex and estimation of the molecular mass of this complex. Immunoreactive eIF-2 alpha was found in fractions with eIF-2 activity and the estimated molecular mass (130 kDa) corresponded to that predicted for the eIF-2 trimer. These analyses suggest that human eIF-2 alpha subunit synthesised in yeast can become involved with the yeast protein synthetic apparatus, though whether this is a functional incorporation requires further genetic studies.  相似文献   

14.
Initiation factor eIF-3 from rat liver forms a binary complex with the small ribosomal subunit. Within this complex, 18S ribosomal RNA can be cross-linked to the 66 000 dalton subunit of eIF-3 by treating the complex with a short bifunctional reagent, diepoxybutane, with a distance of 4A between the reactive groups. In binary complexes containing eIF-3 premodified with the heterobifunctional reagent, methyl-p-azido-benzoylaminoacetimidate (10A), the 66 000 dalton subunit of eIF-3 became covalently bound to 18S rRNA after irradiation of the complex with ultraviolet light. The involvement of only one of the eight eIF-3 subunits in the formation of the covalent RNA-protein complexes indicates a highly specific interaction between 18S rRNA and eIF-3 at the attachment site of the factor on the 40S subunit.  相似文献   

15.
Eukaryotic initiation factor (eIF) 4F, a multiprotein cap binding complex, has been shown to be phosphorylated in vivo in response to phorbol 12-myristate 13-acetate and insulin (Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 264, 2401-2404; Morley, S.J., and Traugh, J.A. (1990) J. Biol. Chem. 265, 10611-10616). The effect of phosphorylation on the activity of purified eIF-4F, utilizing both protein kinase C and a multifunctional S6 kinase, previously identified as protease activated kinase II, has been examined; these protein kinases modify eIF-4F p25 and p220 and eIF-4F p220, respectively. Studies with an eIF-4F-dependent protein synthesis system showed that phosphorylation of eIF-4F with either protein kinase resulted in a 3-5-fold stimulation of translation relative to the nonphosphorylated control. Chemical cross-linking of eIF-4F to cap-labeled mRNA, showed that phosphorylation increased the interaction of both the p25 and p220 subunits of eIF-4F with the 5' end of mRNA. This effect was manifested by a stimulation of initiation complex formation as measured by an increase in the association of labeled mRNA with 40 S ribosomal subunits in the translation system. Thus, phosphorylation of eIF-4F enhances binding to mRNA, resulting in a stimulation of protein synthesis at initiation.  相似文献   

16.
The amino acid hypusine is formed by post-translational modification of a lysine residue in eukaryotes and archaebacteria but up to now only the eukaryotic translation initiation factor eIF-5A has been known to contain this unique component. We isolated and purified a hypusine-containing protein from the thermophilic archaebacterium Sulfolobus acidocaldarius. The mainly cytosolic protein comprised about 0.03% of the post-ribosomal supernatant protein. No other hypusine-containing protein could be detected in S. acidocaldarius. The molar ratio of hypusine/hypusine-containing protein was 1:1. SDS/PAGE showed a molecular mass of 16.8 kDa; a pI of 7.8 for the native protein resulted from IEF. The N-terminus was blocked. Four cyanogen bromide fragments were partially sequenced and used to derive two 17-base oligonucleotide probes. A 3-kb HindIII fragment of genomic DNA hybridizing with both probes was cloned. By sequencing of exonuclease III deletion clones an open reading frame of 405 nucleotides was found coding for a protein of 135 amino acids with a molecular mass of 15 kDa. It contained all cyanogen bromide sequences analysed. Sequence alignment revealed that seven of eight residues around Lys40 in the Sulfolobus hypusine-containing protein were identical to the nonapeptides centered by hypusine in the three eIF-5A proteins sequenced so far. The Edman procedure gave no phenylthiohydantoin derivative for this position. For a central region of 44 residues a sequence similarity of 54% between the archaebacterial and eukaryotic proteins was calculated; for the total sequence about 33% similarity resulted. In addition, there were a number of conservative changes. The unique lysine modification surrounded by a conserved sequence strongly suggests a common ancestry of archaebacterial hypusine-containing protein and eIF-5A. Together with similarities in molecular mass and intracellular localization, it may point to an analogous biochemical function.  相似文献   

17.
Eukaryotic translation initiation factor 5A (eIF-5A) (older terminology, eIF-4D) is unique in that it contains the unusual amino acid hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine). Hypusine is formed by a post-translational event in which a specific lysine residue is modified by a structural contribution from spermidine. Metabolic labeling of chick embryo fibroblasts with [3H]spermidine or [3H]lysine gives rise to two distinct proteins, designated I (approximately 20 kDa and pI 5.6) and II (approximately 18 kDa and pI 5.35), that contain [3H]hypusine. Upon incubation with [3H]lysine the labeling of the two proteins followed a similar time course and showed approximately the same ratio over the 6-h incubation period. [3H]Hypusine-containing proteins from cells which had been cultured with [3H]spermidine were employed as tracers for isolation of hypusine-containing proteins from whole chick embryos. Four such proteins were obtained. Two of these proteins, I and II, correspond to the two native proteins synthesized in chick embryo fibroblasts; the other two forms, Ia and IIa, displayed properties suggesting that they were derived from the native proteins, I and II, respectively, during purification. The amino acid compositions and the tryptic peptide maps of the 20-kDa protein (I) and the 18 kDa protein (II) suggest that they are closely related but distinct proteins. In fact, amino acid sequence analysis of the two major proteins revealed differences in the polypeptide backbone of the two proteins. In spite of structural differences, the two native forms (I and II), as well as the two altered forms (Ia and IIa), were effective in stimulating methionyl-puromycin synthesis, providing evidence that they are indeed functional isoforms of eIF-5A.  相似文献   

18.
The ability of polypeptide components of eukaryotic initiation factor (eIF) 4F to bind to the m7G cap of an mRNA, to be released from that mRNA, and then to rebind to the cap of a second mRNA has been investigated. The release and rebinding steps have been termed "recycling." It was found that eIF-4B stimulates the recycling of the 24-26 kDa (p24) component of eIF-4F, and perhaps of other components as well. By contrast, eIF-4A seemed to have little or no effect on the recycling of eIF-4F components, either in the presence or absence of eIF-4B. The recycled p24 is capable of cross-linking to oxidized cap structures. The recycled factor is also able to stimulate the cross-linking of added eIF-4A, which cross-links poorly in the absence of eIF-4F. By these criteria it seems likely that the recycled eIF-4F components are active for a second round of translational initiation.  相似文献   

19.
In previous studies, initiation of protein synthesis was shown to be inhibited in perfused rat livers deprived of single essential amino acids. In the present study, histidinol, a competitive inhibitor of histidinyl-tRNA synthetase, was used to amplify the effects of histidine deprivation on protein synthesis in perfused liver to facilitate investigation of mechanisms involved in the inhibition of peptide chain initiation. Protein synthesis was reduced to 77% of the control rate in livers deprived of histidine and to 13% of the control rate in livers deprived of histidine and exposed to 2.0 mM histidinol. The inhibition of protein synthesis caused by histidine deprivation alone was accompanied by a 2-fold increase in the number of free ribosomal particles, a 29% decrease in Met-tRNA(i) binding to 43 S preinitiation complexes, and a 31% reduction in activity of eukaryotic initiation factor 2B (eIF-2B). By comparison, histidine deprivation combined with histidinol addition resulted in a 3-fold increase in free ribosomal particles, a 66% decrease in Met-tRNAi binding, and a 78% reduction in eIF-2B activity. The proportion of the alpha-subunit of eukaryotic initiation factor two (eIF-2) in the phosphorylated form increased from 8.9 +/- 0.8% in control livers to 52.4 +/- 5.5% in response to histidinol. The increase in the amount of eIF-2 alpha in the phosphorylated form apparently was not due to an increase in kinase activity, because there was no change in eIF-2 alpha kinase activity in extracts of liver perfused with medium containing histidinol compared to controls. Instead, the increased phosphorylation of eIF-2 alpha was associated with an inhibition of eIF-2 alpha phosphatase activity. Thus, in contrast to other systems that have been examined, the mechanism involved in the increase in the phosphorylation state of eIF-2 alpha appears to involve an inhibition of eIF-2 alpha phosphatase activity rather than activation of an eIF-2 alpha kinase.  相似文献   

20.
On the basis of hydrodynamic, electron microscopic and biochemical investigations a new model of the structure of initiation factor eIF-3 is proposed. From sedimentation and diffusion coefficients of 16.35 S and 2.13 X 10(-7) cm2/s, respectively, as well as from sedimentation equilibrium measurements, a molecular mass of about 650 kDa was determined for isolated eIF-3. This is in agreement with molecular mass estimations by sodium dodecyl sulphate gel electrophoresis. A partial specific volume of 0.723 cm3/g was determined by means of the amino acid composition and the specific volume increments of the amino acids. From this value and from the molecular mass, a volume of 780 nm3 was calculated for eIF-3. In electron micrographs of isolated eIF-3, images with triangular profiles and side lengths of 14 nm, 16 nm, and 17 nm have been observed. Taking into account the calculated volume and considering the triangular image as one face of the particle, it is suggested that eIF-3 has the shape of a flat triangular prism with a height of about 7 nm and the above-mentioned side-lengths. This model is in agreement with results of electron microscopic investigations of eIF-3 in native small ribosomal subunits [Lutsch, G., Benndorf, R., Westermann, P., Bommer, U.-A. & Bielka, H. (1986) Eur. J. Cell Biol. 40/2, in press]. The high frictional ratio of about 1.7 also supports eIF-3 to be rather of a flat than of a globular shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号