首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of citrate, hexose phosphates and glycogen were measured in skeletal muscle and heart under conditions in which plasma non-esterified fatty acids and ketone bodies were physiologically increased. The aim was to determine under what conditions the glucose-fatty acid cycle might operative in skeletal muscle in vivo. In keeping with the findings of others, starvation increased the concentrations of glycogen, citrate and the fructose 6-phosphate/fructose 1,6-bisphosphate ratio in heart, indicating that the cycle was operative. In contrast, it decreased glycogen and had no effect on the concentration of citrate or the fructose 6-phosphate/fructose 1,6-bisphosphate ratio in the soleus, a slow-twitch red muscle in which the glucose-fatty acid cycle has been demonstrated in vitro. In fed rats, exercise of moderate intensity caused glycogen depletion in the soleus and red portion of gastrocnemius muscle, but not in heart. In starved rats the same exercise had no effect on the already diminished glycogen contents in skeletal muscle, but it decreased cardiac glycogen by 25-30%. After exercise, citrate and the fructose 6-phosphate/fructose 1,6-bisphosphate ratio were increased in the soleus of the starved rat. Significant changes were not observed in fed rats. The data suggest that in the resting state the glucose-fatty acid cycle operates in the heart, but not in the soleus muscle, of a starved rat. In contrast, the metabolite profile in the soleus was consistent with activation of the glucose-fatty acid cycle in the starved rat during the recovery period after exercise. Whether the cycle operates during exercise itself is unclear.  相似文献   

2.
Lactate (LDH) and succinate (SDH) dehydrogenases activities decreased in red and white muscles of rat under acute ethanol loading indicating the inhibition of energy metabolism and stepped up lactic acid formation under stress conditions. Aspartate aminotransferase (AAT) and glutamate dehydrogenase (GDH) were found to increase. In contrast to these, the AMP deaminase activity decreased in white muscle suggestive of decreased deamination of nucleic acids. The ornithine cycle enzymes such as argininosuccinate synthetase (ArSS) and arginase indicated diminished activities showing low level of operation of urea cycle and consequent accumulation of ammonia was observed in red muscle with low production of glutamine, whereas in the case of white muscle this trend is reversed. The possible alterations of ethanol toxicity on energy requirements, transdeamination patterns, ureogenesis and glutamine production have been discussed.  相似文献   

3.
A reduced capacity for insulin to elicit increases in glucose uptake and metabolism in target tissues such as skeletal muscle is a common feature of obesity and diabetes. The association between lipid oversupply and such insulin resistance is well established, and evidence for mechanisms through which lipids could play a causative role in the generation of muscle insulin resistance is reviewed. While the effects of lipids may in part be mediated by substrate competition through the glucose-fatty acid cycle, interference with insulin signal transduction by lipid-activated signalling pathways is also likely to play an important role. Thus, studies of insulin resistance in Type 2 diabetes, obesity, fat-fed animals and lipid-treated cells have identified defects both at the level of insulin receptor-mediated tyrosine phosphorylation and at downstream sites such as protein kinase B (PKB) activation. Lipid signalling molecules can be derived from free fatty acids, and include diacylglycerol, which activates isozymes of the protein kinase C (PKC) family, and ceramide, which has several effectors including PKCs and a protein phosphatase. In addition, elevated lipid availability can increase flux through the hexosamine biosynthesis pathway which can also lead to activation of PKC as well as protein glycosylation and modulation of gene expression. The mechanisms giving rise to decreased insulin signalling include serine/threonine phosphorylation of insulin receptor substrate-1, but also direct inhibition of components such as PKB. Thus lipids can inhibit glucose disposal by causing interference with insulin signal transduction, and most likely by more than one pathway depending on the prevalent species of fatty acids.  相似文献   

4.
In macrophages, L-arginine can be used by NO synthase and arginase to form NO and urea, respectively. Therefore, activation of arginase may be an effective mechanism for regulating NO production in macrophages through substrate competition. Here, we examined whether IL-13 up-regulates arginase and thus reduces NO production from LPS-activated macrophages. The signaling molecules involved in IL-13-induced arginase activation were also determined. Results showed that IL-13 increased arginase activity through de novo synthesis of the arginase I mRNA and protein. The activation of arginase was preceded by a transient increase in intracellular cAMP, tyrosine kinase phosphorylation, and p38 mitogen-activated protein kinase (MAPK) activation. Exogenous cAMP also increased arginase activity and enhanced the effect of IL-13 on arginase induction. The induction of arginase was abolished by a protein kinase A (PKA) inhibitor, KT5720, and was down-regulated by tyrosine kinase inhibitors and a p38 MAPK inhibitor, SB203580. However, inhibition of p38 MAPK had no effect on either the IL-13-increased intracellular cAMP or the exogenous cAMP-induced arginase activation, suggesting that p38 MAPK signaling is parallel to the cAMP/PKA pathway. Furthermore, the induction of arginase was insensitive to the protein kinase C and p44/p42 MAPK kinase inhibitors. Finally, IL-13 significantly inhibited NO production from LPS-activated macrophages, and this effect was reversed by an arginase inhibitor, L-norvaline. Together, these data demonstrate for the first time that IL-13 down-regulates NO production through arginase induction via cAMP/PKA, tyrosine kinase, and p38 MAPK signalings and underline the importance of arginase in the immunosuppressive activity of IL-13 in activated macrophages.  相似文献   

5.
Administration of CCl4 (1.0 ml/kg) to rats resulted in a rise of liver tyrosine aminotransferase (l-tyrosine:2-oxoglutarate aminotransferase, EC 2.6.1.5) activity to a maximum of about 3.6 times the normal level 6 hr later. An immunological titration study proved that the phenomenon was due to increased enzyme content. Using an isotopic-immunochemical procedure the half-life of liver tyrosine aminotransferase at 3.5 hr after CCl4 administration was shown to be 11.9 hr in contrast to 2.1 hr in the normal liver. Immunochemical analysis revealed that enzyme synthesis was decreased by CCl4. Thus, in the early stage of CCl4 poisoning, enzyme synthesis proceeded at a moderate rate while degradation was markedly impaired, resulting in the rise of tyrosine aminotransferase in the liver tissue.Several hours after administration of hydrocortisone to adrenalectomized rats, induced tyrosine aminotransferase reached its peak activity and then subsided to the basal level. At any time following hydrocortisone administration, administration of CCl4 consistently caused an elevation of the enzyme activity above the level in controls not treated with CCl4. Actinomycin D (5 mg/kg) also increased the enzyme at an early period of induction cycle but failed to do so at a later period.The CCl4-mediated “superinduction” of hormonally preinduced tyrosine aminotransferase, like the induction of this enzyme by CCl4 at a basal level, was found to be caused by the differential inhibitory effect of CCl4 on the synthesis and degradation of this enzyme.  相似文献   

6.
Rat hepatocytes were incubated in monolayer culture in modified Leibovitz L-15 medium containing either 10% (v/v) newborn-calf serum or 0.2% (w/v) fatty-acid-poor bovine serum albumin. The addition of 100 nM-dexamethasone increased the activities of both phosphatidate phosphohydrolase and tyrosine aminotransferase by about 3.5-fold after 8h, and these activities continued to rise until at least 24h. Incubating the hepatocytes in the albumin-containing medium with 10 microM- or 100 microM-8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate increased the activities of the phosphohydrolase and aminotransferase by 2.6- and 3.4-fold respectively after 8h. These increases were blocked by actinomycin D. The increases in the activities that were produced by the cyclic AMP analogue and dexamethasone were independent and approximately additive. Insulin when added alone did not alter the phosphohydrolase activity, but it increased the aminotransferase activity by 34%. The dexamethasone-induced increase in the phosphohydrolase activity was completely blocked by 7-144 microM-insulin, whereas that of the aminotransferase was only partly suppressed. Insulin had no significant Effects on the increases in the activities of phosphatidate phosphohydrolase and tyrosine aminotransferase that were produced by the cyclic AMP analogue, but this may be because the analogue is fairly resistant to degradation by the phosphodiesterase. The activity of glycerol kinase was not significantly changed by incubating the hepatocytes with insulin, dexamethasone and the cyclic AMP analogue alone or in combinations. It is proposed that high concentrations of cyclic AMP and glucocorticoids increase the total activity of phosphatidate phosphohydrolase in the liver and provide it with an increased capacity for synthesizing triacylglycerols and very-low-density lipoproteins, which is expressed when the availability of fatty acids is high. There appears to be a co-ordinated hormonal control of triacyglycerol synthesis and gluconeogenesis in diabetes and in metabolic stress to enable the liver to supply other organs with energy.  相似文献   

7.
Abstract— The distribution of argininosuccinate synthetase, argininosuccinase and arginase, and the synthesis of urea in cerebullum. cerebral cortex and brain stem have been studied. Cerebral cortex had high levels of argininosuccinate synthetase and argininosuccinase. and a high ability to synthesize urea from aspartic acid and citrulline. Of the three regions, cerebullum had the highest arginase activity. The activities of the enzymes transamidinase and ornithine aminotransferase in the metabolism of arginine and ornithine in pathways other than urea formation have been studied in the three regions of the rat brain. The activity of creatine phosphokinase in all regions was the same: carbamylphosphatase activity was highest in cerebullum. Cerebral cortex had a high activity of aspartic acid transcarba-mylase. The brain stem, among the three regions, had the lowest activities of glutamine synthetase and glutaminase. The activities of these enzymes in the different regions are discussed in relation to urea production and the utilization of the urea cycle intermediates.
Intraperitoneal injection of high amounts of citrulline brought about a rise in the glutamine synthetase activity of cerebellum and brain stem and a rise in ornithine aminotransferase in cerebral cortex and liver. These results are discussed in relation to the mechanism of action of citrulline in alleviating the toxicity in hyperammonaemic states.  相似文献   

8.
Abstract— The action of hydrazinopropionic acid in vivo on the metabolism of amino acids in the CNS of mice was studied over a period of 24 hr. At 82 μmoles/kg, a transient fourfold rise in the levels of tyrosine occurred followed by a more moderate and prolonged increase in the levels of GABA. When the dose of hydrazinopropionate was raised to 123 μmoles/kg, the changes in the levels of tyrosine were identical with those at the lower dose, while levels of GABA rose further before reaching a steady state. Levels of glutamate decreased concomitantly. In addition, the concentrations of alanine, β-aminoisobutyric acid and an unknown compound tended to rise. A doubling of the dose to 246 μmoles/kg enhanced the effects obtained with the lower doses but did not produce any new changes in the patterns of amino acids of the CNS. The elevation in the concentrations of alanine paralleled changes in the levels of tyrosine. The changes in the concentrations of the unknown compound, tentatively identified as α-aminoadipate, and of β-aminoisobutyric acid resembled those of GABA. The results are interpreted to indicate an inhibition by hydrazinopropionic acid of tyrosine aminotransferase and aminobutyrate aminotransferase.  相似文献   

9.
The stabilities of nine rat liver cytosol enzymes were compared at a variety of pH values. The cytosol enzymes studied were (a) those with half-lives in vivo of 3 days or longer: lactate dehydrogenase, arginase, glyceraldehyde phosphate dehydrogenase and alanine aminotransferase, (b) those with half-lives in vivo shorter than 2 days; glucokinase, dihydroorotase, serine dehydratase and tyrosine aminotransferase and (c) catalase, which has an intermediate half-life of 2.5 days for the protein protion. All the enzymes were stable in vitro at neurtal and alkaline pH values. However, at acidic pH values (pH 4): the long-lived enzymes (a) were stable; the short-lived enzymes (b) were completely inactivated with one exception; and catalase was partially inactivated. Tyrosine aminotransferase was the exception in that it is a short-lived enzyme in vivo but stable under all conditions tested in vitro. The finding that long-lived enzymes are stable in an acid milieu and short-lived enzymes are generally unstable was only observed if certain ligands (NAD+, pyridoxal 5'-phosphate, Mn2+, amino acids) were added to the invitro system. Lysosomal extracts did not accelerate the rate of inactivation of any cytosol enzyme in acidic solutions. These results indicate that if degradation of intracellular enzymes occurs in lysosomes, acid inactivation and denaturation of enzymes may be the initial event in determining the functional half-lives of the enzymes in vivo.  相似文献   

10.
G J Lees 《Life sciences》1977,20(10):1749-1762
Using low concentrations of substrates and cofactors, a comparison was made of the relative rates by which aminotransferases catalysed transaminations between aromatic amino acids and aromatic or aliphatic keto acids. Tryptophan aminotransferase in homogenates of rat midbrain and liver transaminated phenylpyruvate at a rate 70 to 150-fold greater than the rate with α-ketoglutarate at low concentrations of substrates. Phenylalanine aminotransferase in liver and midbrain also was more active with aromatic keto acids than with aliphatic keto acids. However, tyrosine aminotransferase in dialysed homogenates of midbrain transaminated α-ketoglutarate and phenylpyruvate at approximately equal rates. Fresh homogenates of midbrain contained an inhibitor which markedly decreased tyrosine aminotransferase activity with α-ketoglutarate but not with phenylpyruvate. Tyrosine aminotransferase in homogenates of rat liver transaminated α-ketoglutarate and phenylpyruvate at equal rates below 10 μM keto acid, but above 10 μM, transamination of α-ketoglutarate was favoured. With homogenates of liver, transamination of α-ketoglutarate, but not phenylpyruvate, by tyrosine was increased 650% by exogenous pyridoxal phosphate. Since tryptophan aminotransferase in the brain may compete with tryptophan hydroxylase for available tryptophan, a comparison was made of the relative activities of tryptophan hydroxylase and tryptophan aminotransferase. At concentrations above 7.5 μM phenylpyruvate, transamination was 8 to 17-fold greater than the rate of hydroxylation of 50 μM tryptophan.  相似文献   

11.
Tyrosine aminotransferase was induced in adult and senescent rat liver and its properties studied. We show the appearance of a 'cross-reacting material' for induced tyrosine aminotransferase of old rats compared to basal enzyme; this cross-reacting material can be provoked in adult rats after injection of cycloheximide, and suppressed in adult and old rats after injection of a serine protease inhibitor (tosylphenylalanine chloromethylketone). Other properties of induced tyrosine aminotransferase (thermostability, Km for tyrosine, isoelectrofocusing) are identical except for the proportion of the three forms and their sensitivity to trypsin in the absence of pyridoxal phosphate, which is increased in senescent animals. The suppression of cross-reacting material clearly indicates that it is not due to errors on old rat liver DNA but rather to post-translational modifications. This demonstrates also the role of serine proteases in tyrosine aminotransferase degradation. We suggest that induced enzyme of senescent rats would undergo a conformational change, possibly due to a release of pyridoxal phosphate from the enzymic molecules, which would thus become more susceptible to proteolytic attack than those of adult rats.  相似文献   

12.
The stabilities of nine rat liver cytosol enzymes were compared at a variety of pH values. The cytosol enzymes studied were (a) those with half-lives in vivo of 3 days or longer: lactate dehydrogenase, arginase, glyceraldehyde phosphate dehydrogenase and alanine aminotransferase, (b) those with half-lives in vivo shorter than 2 days; glucokinase, dihydroorotase, serine dehydratase and tyrosine aminotransferase and (c) catalase, which has an intermediate half-life of 2.5 days for the protein portion. All the enzymes were stable in vitro at neutral and alkaline pH values. However, at acidic pH values (pH 4): the long-lived enzymes (a) were stable; the short-lived enzymes (b) were completely inactivated with one exception; and catalase was partially inactivated. Tyrosine aminotransferase was the exception in that it is a short-lived enzyme in vivo but stable under all conditions tested in vitro. The finding that long-lived enzymes are stable in an acid milieu and short-lived enzymes are generally unstable was only observed if certain ligands (NAD+, pyridoxal 5′-phosphate, Mn2+, amino acids) were added to the iv vitro systems. Lysosomal extracts did not accelerate the rate of inactivation of any cytosol enzyme in acidic solutions. These results indicate that if degradation of intracellular enzymes occurs in lysosomes, acid inactivation and denaturation of enzymes may be the initial event in determining the functional half-lives of the enzymes in vivo.  相似文献   

13.
Regulation of rat hepatic cytosolic glucocorticoid receptors was studied using our newly developed exchange assay. Injecting 1 mg of dexamethasone or corticosterone into 150-250 g adrenalectomized rats caused a rapid decline in glucocorticoid receptor binding. Glucocorticoid receptor levels were depressed 80-90% in less than 15 min after hormone treatment, and remained low for about 24-48 h after glucocorticoid administration. 80-90% of glucocorticoid receptor binding was regenerated by 48 h, and complete binding was recovered by 72 h. Regenerated glucocorticoid receptor binding (48-72 h after first hormone injection) could be re-depressed by a second injection of the hormone. Similar results were obtained using normal (intact) rats. Optimum induction of tyrosine aminotransferase activity was obtained within 2 h following the first hormonal injection. Induction of tyrosine aminotransferase activity (measured 2 h after a second injection of the glucocorticoid) correlated with glucocorticoid receptor levels. Thus, 1 mg of dexamethasone or corticosterone greatly enhanced the liver tyrosine aminotransferase activity in the adrenalectomized rats (not previously hormone treated) and in adrenalectomized rats previously injected (48-72 h) with 1 mg of the glucocorticoid hormone. Enhancement of tyrosine aminotransferase activity was lowest 16-24 h after the first hormone injection (when receptor levels were extremely low). These results indicate that the induction of liver tyrosine aminotransferase activity by glucocorticoid hormones is correlated with cytosolic glucocorticoid receptor levels.  相似文献   

14.
R van Wijk  L Loesberg  G T Snoek 《Biochimie》1983,65(11-12):643-652
Tyrosine aminotransferase activity increased during conversion of serum depleted quiescent Reuber H35 rat hepatoma cells into the proliferative state. Increased activity coincides with the actual increase of cells into S phase. The rate of tyrosine aminotransferase synthesis along the cell cycle was studied. The rate of enzyme synthesis fluctuated through the cell cycle but could not explain the increase of specific activity. Apparently enzyme activity is predominantly regulated by a post-translational event. Intracellular levels of cyclic AMP and cyclic GMP were measured at various times of G1 and S phases. In the early part of the cell cycle tyrosine aminotransferase decreased while intracellular levels of cyclic AMP increased. At later stages cyclic AMP rises concurrently with increased rates of enzyme synthesis. Induction of tyrosine aminotransferase by N6,O2'-dibutyryladenosine 3', 5'-monophosphate (Bt2cAMP) was studied. Inducibility by Bt2cAMP fluctuated through the cell cycle. Alternation of positive and negative control of tyrosine aminotransferase synthesis was observed. In early serum induced cells, Bt2cAMP increased enzyme activity without any increased rate of enzyme synthesis, on the contrary, a decreased rate of synthesis was observed. The data support the view that alternation of positive and negative control of tyrosine aminotransferase synthesis and temporary post-translational control of enzyme activity determine the enzyme level during the transition of quiescent hepatoma cells into proliferation.  相似文献   

15.
Recently, we observed that central administration of L-arginine attenuated stress responses in neonatal chicks, but the contribution of nitric oxide (NO) to this response was minimal. The sedative and hypnotic effects of L-arginine may be due to L-arginine itself and/or its metabolites, excluding NO. To clarify the mechanism, the effect of intracerebroventricular (i.c.v.) injection of L-arginine metabolites on behavior under social separation stress was investigated. The i.c.v. injection of agmatine, a guanidino metabolite of L-arginine, had no effect during a 10 min behavioral test. In contrast, the i.c.v. injection of L-ornithine clearly attenuated the stress response in a dose-dependent manner, and induced sleep-like behavior. The L-ornithine concentration in the telencephalon and diencephalon increased following the i.c.v. injection of L-arginine. In addition, several free amino acids including L-alanine, glycine, L-proline and L-glutamic acid concentrations increased in the telencephalon. In conclusion, it appears that L-ornithine, produced by arginase from L-arginine in the brain, plays an important role in the sedative and hypnotic effects of L-arginine observed during a stress response. In addition, several other amino acids having a sedative effect might partly participate in the sedative and hypnotic effects of L-arginine.  相似文献   

16.
Regulation of hepatic tyrosine aminotransferase in genetically obese rats   总被引:1,自引:0,他引:1  
The activities of hepatic tyrosine aminotransferase, tryptophan oxygenase and serine dehydratase were increased in obese rats shortly after weaning. Immunotitration experiments showed that the increase in tyrosine aminotransferase activity resulted from an increase in enzyme protein in obese rats. No increase in hepatic tyrosine aminotransferase was observed in suckling pre-obese rats. The post-weaning increase in hepatic tyrosine aminotransferase of obese rats was only observed during the light phase of the diurnal cycle, but was prevented by pair-feeding and by starvation. Tryptophan increased hepatic tyrosine aminotransferase of lean rats to obese levels but had no effect in obese rats until tyrosine aminotransferase levels were reduced by starvation or adrenalectomy. Adrenalectomy abolished the increase in hepatic tyrosine aminotransferase activity in obese rats although serum corticosterone was normal in these animals. Hepatic and brain tyrosine concentrations were decreased in obese rats but normalized after adrenalectomy. The results suggest that the corticosteroid-dependent increase in food and tryptophan intake may be the primary cause of the increased hepatic amino acid catabolism of obese rats.  相似文献   

17.
The relationship between the NAD-metabolism and the induction of the tyrosine aminotransferase was studied. The content of NAD+ + NADH differs markedly from organ to organ. The highest values can be found in the liver. In intact animals tryptophan leads to an increase of NAD in liver and kidney, but not in brain and spleen. Nicotinamide, on the other hand, induces NAD synthesis in all the organs tested. In adrenalectomized animals, however, there is practically no rise of the NAD content after application of tryptophan contrary to the effect of nicotinamide. The enzyme tyrosine aminotransferase can be induced in intact animals by nicotinamide and tryptophan. This effect is much less pronounced in adrenalectomized animals. In adrenalectomized animals the induction of the tyrosine aminotransferase by tryptophan is markedly elevated by caffeine and theophylline. Under these conditions there is a significant increase of the NAD content as well. The tryptophan promoted induction of the tyrosine aminotransferase is influenced by inhibitors of the ADPR-transferase. The data presented give further evidence that the NAD adenoribosylation metabolism is involved in the induction of the tyrosine aminotransferase.  相似文献   

18.
Y.C. Chia  G.W. Smith  G.J. Lees 《Life sciences》1984,34(25):2443-2452
Homogenates of rat liver transaminate phenylpyruvate (PP), as well as α-ketoglutarate (α-KG), in the presence of L-tyrosine, 3,4-dihydroxyphenylalanine (L-DOPA) or L-tryptophan. Aminotransferase activity with phenylpyruvate and DOPA, but not with tyrosine, was inhibited by excess phenylpyruvate. Tyrosine and DOPA aminotransferase activities with phenylpyruvate were more heat stable than the corresponding activities with α-ketoglutarate. Aminotransferase activities with phenylpyruvate were not significantly induced following intraperitoneal injections of cortisol, glucagon or serotonin, compared with a 3 to 7-fold increase in the aminotransferase activities with α-ketoglutarate. Tyrosine:phenylpyruvate aminotransferase activity rose 40% at night, compared with a 300% increase in tyrosine:α-ketoglutarate aminotransferase activity. The results suggest that aminotransferases catalysing transfers between aromatic keto acids and aromatic amino acids are separate enzymes from those utilizing α-ketoglutarate as the acceptor keto acid.  相似文献   

19.
The effect of o-aminoazotoluene (OAT) on the activity of tyrosine aminotransferase (TAT) from mouse liver cytosol under its incubation in the presence of the systems providing for the metabolic activation of the cancerogen (liver microsomes and NADPH2) and dephosphorylation of TAT molecules (light mitochondria and ATP) was studied. It was shown that OAT has neither direct nor indirect (via the phsophorylation--dephosphorylation systems) effect on the activity of TAT. It was concluded that the decrease of TAT induction by hydrocortisone in vivo resulting from injection of OAT to the mice is not due to the direct influence of the cancerogen on the enzyme molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号