首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 26S proteasome-dependent protein degradation is an evolutionarily conserved process. The mammalian oncoprotein gankyrin, which associates with S6 of the proteasome, facilitates the degradation of pRb, and thus possibly acts as a bridging factor between the proteasome and its substrates. However, the mechanism of the proteasome-dependent protein degradation in yeast is poorly understood. Here, we report the tertiary structure of the complex between Nas6 and a C-terminal domain of Rpt3, which are the yeast orthologues of gankyrin and S6, respectively. The concave region of Nas6 bound to the alpha-helical domain of Rpt3. The stable interaction between Nas6 and Rpt3 was mediated by intermolecular interactions composed of complementary charged patches. The recognition of Rpt3 by Nas6 in the crystal suggests that Nas6 is indeed a subunit of the 26S proteasome. These results provide a structural basis for the association between Nas6 and the heterohexameric ATPase ring of the proteasome through Rpt3.  相似文献   

2.
With muscle wasting, caspase-3 activation and the ubiquitin-proteasome system act synergistically to increase the degradation of muscle proteins. Whether proteasome activity is also elevated in response to catabolic conditions is unknown. We find that caspase-3 increases proteasome activity in myotubes but not in myoblasts. This difference is related to the cleavage of specific 19 S proteasome subunits. In mouse muscle or myotubes, caspase-3 cleaves Rpt2 and Rpt6 increasing proteasome activity. In myoblasts, caspase-3 cleaves Rpt5 to decrease proteasome activity. To confirm the caspase-3 dependence, caspase-3 cleavage sites in Rpt2, Rpt6, or Rpt5 were mutated. This prevented the cleavage of these subunits by caspase-3 as well as the changes in proteasome activity. During differentiation of myoblasts to myotubes, there is an obligatory, transient increase in caspase-3 activity, accompanied by a corresponding increase in proteasome activity and cleavage of Rpt2 and Rpt6. Therefore, differentiation changes the proteasome type from sensitivity of Rpt5 to caspase-3 in myoblasts to sensitivity of Rpt2 and Rpt6 in myotubes. This novel mechanism identifies a feed-forward amplification that augments muscle proteolysis in catabolic conditions. Indeed, we found that in mice with a muscle wasting condition, chronic kidney disease, there was cleavage of subunits Rpt2 and Rpt6 and stimulation of proteasome activity.  相似文献   

3.
CKIP‐1 is an activator of the Smurf1 ubiquitin ligase acting to promote the ubiquitylation of Smad5 and MEKK2. The mechanisms involved in the recognition and degradation of these substrates by the proteasome remain unclear. Here, we show that CKIP‐1, through its leucine zipper, interacts directly with the Rpt6 ATPase of the 19S regulatory particle of the proteasome. CKIP‐1 mediates the Smurf1–Rpt6 interaction and delivers the ubiquitylated substrates to the proteasome. Depletion of CKIP‐1 reduces the degradation of Smurf1 and its substrates by Rpt6. These findings reveal an unexpected adaptor role of CKIP‐1 in coupling the ubiquitin ligase and the proteasome.  相似文献   

4.
The 26 S proteasome, a complex between the 20 S proteasome and 19 S regulatory units, catalyzes ATP-dependent degradation of unfolded and ubiquitinated proteins in eukaryotes. We have identified previously 20 S and activated 20 S proteasomes in Trypanosoma brucei, but not 26 S proteasome. However, the presence of 26 S proteasome in T. brucei was suggested by the hydrolysis of casein by cell lysate, a process that requires ATP but is inhibited by lactacystin, and the lactacystin-sensitive turnover of ubiquitinated proteins in the intact cells. T. brucei cDNAs encoding the six proteasome ATPase homologues (Rpt) were cloned and expressed. Five of the six T. brucei Rpt cDNAs, except for Rpt2, were capable of functionally complementing the corresponding rpt deletion mutants of Saccharomyces cerevisiae. Immunoblots showed the presence in T. brucei lysate of the Rpt proteins, which co-fractionated with the yeast 19 S proteasome complex by gel filtration and localized in the 19 S fraction of a glycerol gradient. All the Rpt and putative 19 S non-ATPase (Rpn) proteins were co-immunoprecipitated from T. brucei lysate by individual anti-Rpt antibodies. Treatment of T. brucei cells with a chemical cross-linker resulted in co-immunoprecipitation of 20 S proteasome with all the Rpt and Rpn proteins that sedimented in a glycerol gradient to the position of 26 S proteasome. These data demonstrate the presence of 26 S proteasome in T. brucei cells, which apparently dissociate into 19 S and 20 S complexes upon cell lysis. RNA interference to block selectively the expression of proteasome 20 S core and Rpt subunits resulted in significant accumulation of ubiquitinated proteins accompanied by cessation of cell growth. Expression of yeast RPT2 gene in T. brucei Rpt2-deficient cells could not rescue the lethal phenotype, thus confirming the incompatibility between the two Rpt2s. The T. brucei 11 S regulator (PA26)-deficient RNA interference cells grew normally, suggesting the dispensability of activated 20 S proteasome in T. brucei.  相似文献   

5.
The 26S proteasome is the most downstream element of the ubiquitin-proteasome pathway of protein degradation. It is composed of the 20S core particle (CP) and the 19S regulatory particle (RP). The RP consists of 6 AAA-ATPases and at least 13 non-ATPase subunits. Based on a cryo-EM map of the 26S proteasome, structures of homologs, and physical protein-protein interactions we derive an atomic model of the AAA-ATPase-CP sub-complex. The ATPase order in our model (Rpt1/Rpt2/Rpt6/Rpt3/Rpt4/Rpt5) is in excellent agreement with the recently identified base-precursor complexes formed during the assembly of the RP. Furthermore, the atomic CP-AAA-ATPase model suggests that the assembly chaperone Nas6 facilitates CP-RP association by enhancing the shape complementarity between Rpt3 and its binding CP alpha subunits partners.  相似文献   

6.
Endoplasmic reticulum (ER)-associated degradation (ERAD) eliminates aberrant proteins from the ER by dislocating them to the cytoplasm where they are tagged by ubiquitin and degraded by the proteasome. Six distinct AAA-ATPases (Rpt1-6) at the base of the 19S regulatory particle of the 26S proteasome recognize, unfold, and translocate substrates into the 20S catalytic chamber. Here we show unique contributions of individual Rpts to ERAD by employing equivalent conservative substitutions of the invariant lysine in the ATP-binding motif of each Rpt subunit. ERAD of two substrates, luminal CPY*-HA and membrane 6myc-Hmg2, is inhibited only in rpt4R and rpt2RF mutants. Conversely, in vivo degradation of a cytosolic substrate, DeltassCPY*-GFP, as well as in vitro cleavage of Suc-LLVY-AMC are hardly affected in rpt4R mutant yet are inhibited in rpt2RF mutant. Together, we find that equivalent mutations in RPT4 and RPT2 result in different phenotypes. The Rpt4 mutation is manifested in ERAD defects, whereas the Rpt2 mutation is manifested downstream, in global proteasomal activity. Accordingly, rpt4R strain is particularly sensitive to ER stress and exhibits an activated unfolded protein response, whereas rpt2RF strain is sensitive to general stress. Further characterization of Rpt4 involvement in ERAD reveals that it participates in CPY*-HA dislocation, a function previously attributed to p97/Cdc48, another AAA-ATPase essential for ERAD of CPY*-HA but dispensable for proteasomal degradation of DeltassCPY*-GFP. Pointing to Cdc48 and Rpt4 overlapping functions, excess Cdc48 partially restores impaired ERAD in rpt4R, but not in rpt2RF. We discuss models for Cdc48 and Rpt4 cooperation in ERAD.  相似文献   

7.
PA700, the 19 S regulatory subcomplex of the 26 S proteasome, contains a heterohexameric ring of AAA subunits (Rpt1 to -6) that forms the binding interface with a heteroheptameric ring of α subunits (α1 to -7) of the 20 S proteasome. Binding of these subcomplexes is mediated by interactions of C termini of certain Rpt subunits with cognate binding sites on the 20 S proteasome. Binding of two Rpt subunits (Rpt2 and Rpt5) depends on their last three residues, which share an HbYX motif (where Hb is a hydrophobic amino acid) and open substrate access gates in the center of the α ring. The relative roles of other Rpt subunits for proteasome binding and activation remain poorly understood. Here we demonstrate that the C-terminal HbYX motif of Rpt3 binds to the 20 S proteasome but does not promote proteasome gating. Binding requires the last three residues and occurs at a dedicated site on the proteasome. A C-terminal peptide of Rpt3 blocked ATP-dependent in vitro assembly of 26 S proteasome from PA700 and 20 S proteasome. In HEK293 cells, wild-type Rpt3, but not Rpt3 lacking the HbYX motif was incorporated into 26 S proteasome. These results indicate that the C terminus of Rpt3 was required for cellular assembly of this subunit into 26 S proteasome. Mutant Rpt3 was assembled into intact PA700. This result indicates that intact PA700 can be assembled independently of association with 20 S proteasome and thus may be a direct precursor for 26 S proteasome assembly under normal conditions. These results provide new insights to the non-equivalent roles of Rpt subunits in 26 S proteasome function and identify specific roles for Rpt3.  相似文献   

8.
Degradation by proteasomes involves coupled translocation and unfolding of its protein substrates. Six distinct but paralogous proteasome ATPase proteins, Rpt1 to -6, form a heterohexameric ring that acts on substrates. An axially positioned loop (Ar-Φ loop) moves in concert with ATP hydrolysis, engages substrate, and propels it into a proteolytic chamber. The aromatic (Ar) residue of the Ar-Φ loop in all six Rpts of S. cerevisiae is tyrosine; this amino acid is thought to have important functional contacts with substrate. Six yeast strains were constructed and characterized in which Tyr was individually mutated to Ala. The mutant cells were viable and had distinct phenotypes. rpt3, rpt4, and rpt5 Tyr/Ala mutants, which cluster on one side of the ATPase hexamer, were substantially impaired in their capacity to degrade substrates. In contrast, rpt1, rpt2, and rpt6 mutants equaled or exceeded wild type in degradation activity. However, rpt1 and rpt6 mutants had defects that limited cell growth or viability under conditions that stressed the ubiquitin proteasome system. In contrast, the rpt3 mutant grew faster than wild type and to a smaller size, a defect that has previously been associated with misregulation of G1 cyclins. This rpt3 phenotype probably results from altered degradation of cell cycle regulatory proteins. Finally, mutation of five of the Rpt subunits increased proteasome ATPase activity, implying bidirectional coupling between the Ar-Φ loop and the ATP hydrolysis site. The present observations assign specific functions to individual Rpt proteins and provide insights into the diverse roles of the axial loops of individual proteasome ATPases.  相似文献   

9.
Deposition of misfolded proteins with a polyglutamine expansion is a hallmark of Huntington disease and other neurodegenerative disorders. Impairment of the proteolytic function of the proteasome has been reported to be both a cause and a consequence of polyglutamine accumulation. Here we found that the proteasomal chaperones that unfold proteins to be degraded by the proteasome but also have non-proteolytic functions co-localized with huntingtin inclusions both in primary neurons and in Huntington disease patients and formed a complex independently of the proteolytic particle. Overexpression of Rpt4 or Rpt6 facilitated aggregation of mutant huntingtin and ataxin-3 without affecting proteasomal degradation. Conversely, reducing Rpt6 or Rpt4 levels decreased the number of inclusions in primary neurons, indicating that endogenous Rpt4 and Rpt6 facilitate inclusion formation. In vitro reconstitution experiments revealed that purified 19S particles promote mutant huntingtin aggregation. When fused to the ornithine decarboxylase destabilizing sequence, proteins with expanded polyglutamine were efficiently degraded and did not aggregate. We propose that aggregation of proteins with expanded polyglutamine is not a consequence of a proteolytic failure of the 20S proteasome. Rather, aggregation is elicited by chaperone subunits of the 19S particle independently of proteolysis.  相似文献   

10.
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.  相似文献   

11.
The 26 S proteasome of eukaryotes is responsible for the degradation of proteins targeted for proteolysis by the ubiquitin system. Yeast has been an important model organism for understanding eukaryotic proteasome structure and function. Toward a quantitative characterization of the proteasome, we have determined the localization, cellular levels, and stoichiometry of proteasome subunits. The subcellular localization of two ATPase components of the regulatory complex of the proteasome, Sug2/Rpt4 and Sug1/Rpt6, and a subunit of the 20 S proteasome, Pre1, were determined by immunofluorescence. In contrast to findings in multicellular organisms, these proteins are localized almost exclusively to the nucleus throughout the cell cycle. We have also determined the cellular abundance and stoichiometry of these proteasome subunits. Sug1/Rpt6, Sug2/Rpt4, and Pre1 are present in roughly equal stoichiometry with an abundance of 15,000-30,000 molecules/cell, corresponding to a concentration of 13-26 microM in the nucleus. Also, in contrast to mammalian cells, we find no evidence of a p27-containing "modulator" of the proteasome in yeast. This information will be useful in comparing and contrasting the yeast and mammalian proteasomes and should contribute to a mechanistic understanding of how this complex functions.  相似文献   

12.
The 26 S proteasome comprises two multisubunit subcomplexes as follows: 20 S proteasome and PA700/19 S regulatory particle. The cellular mechanisms by which these subcomplexes assemble into 26 S proteasome and the molecular determinants that govern the assembly process are poorly defined. Here, we demonstrate the nonequivalent roles of the C termini of six AAA subunits (Rpt1-Rpt6) of PA700 in 26 S proteasome assembly in mammalian cells. The C-terminal HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) of each of two subunits, Rpt3 and Rpt5, but not that of a third subunit Rpt2, was essential for assembly of 26 S proteasome. The C termini of none of the three non-HbYX motif Rpt subunits were essential for cellular 26 S proteasome assembly, although deletion of the last three residues of Rpt6 destabilized the 20 S-PA700 interaction. Rpt subunits defective for assembly into 26 S proteasome due to C-terminal truncations were incorporated into intact PA700. Moreover, intact PA700 accumulated as an isolated subcomplex when cellular 20 S proteasome content was reduced by RNAi. These results indicate that 20 S proteasome is not an obligatory template for assembly of PA700. Collectively, these results identify specific structural elements of two Rpt subunits required for 26 S proteasome assembly, demonstrate that PA700 can be assembled independently of the 20 S proteasome, and suggest that intact PA700 is a direct intermediate in the cellular pathway of 26 S proteasome assembly.  相似文献   

13.
The 26 S proteasome is an energy-dependent protease that degrades proteins modified with polyubiquitin chains. It is assembled from two multi-protein subcomplexes: a protease (20 S proteasome) and an ATPase regulatory complex (PA700 or 19 S regulatory particle) that contains six different AAA family subunits (Rpt1 to -6). Here we show that binding of PA700 to the 20 S proteasome is mediated by the COOH termini of two (Rpt2 and Rpt5) of the six Rpt subunits that constitute the interaction surface between the subcomplexes. COOH-terminal peptides of either Rpt2 or Rpt5 bind to the 20 S proteasome and activate hydrolysis of short peptide substrates. Simultaneous binding of both COOH-terminal peptides had additive effects on peptide substrate hydrolysis, suggesting that they bind to distinct sites on the proteasome. In contrast, only the Rpt5 peptide activated hydrolysis of protein substrates. Nevertheless, the COOH-terminal peptide of Rpt2 greatly enhanced this effect, suggesting that proteasome activation is a multistate process. Rpt2 and Rpt5 COOH-terminal peptides cross-linked to different but specific subunits of the 20 S proteasome. These results reveal critical roles of COOH termini of Rpt subunits of PA700 in the assembly and activation of eukaryotic 26 S proteasome. Moreover, they support a model in which Rpt subunits bind to dedicated sites on the proteasome and play specific, nonequivalent roles in the asymmetric assembly and activation of the 26 S proteasome.  相似文献   

14.
Dysregulation of the proteasome has been documented in a variety of human diseases such as Alzheimer, muscle atrophy, cataracts etc. Proteolytic activity of 26 S proteasome is ATP- and ubiquitin-dependent. O-GlcNAcylation of Rpt2, one of the AAA ATPases in the 19 S regulatory cap, shuts off the proteasome through the inhibition of ATPase activity. Thus, through control of the flux of glucose into O-GlcNAc, the function of the proteasome is coupled to glucose metabolism. In the present study we found another metabolic control of the proteasome via cAMP-dependent protein kinase (PKA). Contrary to O-Glc-NAcylation, PKA activated proteasomes both in vitro and in vivo in association with the phosphorylation at Ser(120) of another AAA ATPase subunit, Rpt6. Mutation of Ser(120) to Ala blocked proteasome function. The stimulatory effect of PKA and the phosphorylation of Rpt6 were reversible by protein phosphatase 1 gamma. Thus, hormones using the PKA system can also regulate proteasomes often in concert with glucose metabolism. This finding might lead to novel strategies for the treatment of proteasome-related diseases.  相似文献   

15.
Here, we report a novel mechanism of proteasome inhibition mediated by Thiostrepton (Thsp), which interacts covalently with Rpt subunits of the 19S proteasome and proteasome substrates. We identified Thsp in a cell‐based high‐throughput screen using a fluorescent reporter sensitive to degradation by the ubiquitin–proteasome pathway. Thiostrepton behaves as a proteasome inhibitor in several paradigms, including cell‐based reporters, detection of global ubiquitination status, and proteasome‐mediated labile protein degradation. In vitro, Thsp does not block the chymotrypsin activity of the 26S proteasome. In a cell‐based IκBα degradation assay, Thsp is a slow inhibitor and 4 hrs of treatment achieves the same effects as MG‐132 at 30 min. We show that Thsp forms covalent adducts with proteins in human cells and demonstrate their nature by mass spectrometry. Furthermore, the ability of Thsp to interact covalently with the cysteine residues is essential for its proteasome inhibitory function. We further show that a Thsp modified peptide cannot be degraded by proteasomes in vitro. Importantly, we demonstrate that Thsp binds covalently to Rpt subunits of the 19S regulatory particle and forms bridges with a proteasome substrate. Taken together, our results uncover an important role of Thsp in 19S proteasome inhibition.  相似文献   

16.
The 26S proteasome is a multicatalytic protease complex that degrades ubiquitinated proteins in eukaryotic cells. It consists of a proteolytic core (the 20S proteasome) as well as regulatory particles, which contain six ATPase (Rpt) subunits involved in unfolding and translocation of substrates to the catalytic chamber of the 20S proteasome. In this study, we used MS to analyze the N‐terminal modifications of the yeast Rpt1 subunit, which contains the N‐terminal recognition sequence for N‐methyltransferase. Our results revealed that following the removal of the initiation Met residue of yeast Rpt1, the N‐terminal Pro residue is either unmodified, mono‐methylated, or di‐methylated, and that this N‐methylation has not been conserved throughout evolution. In order to gain a better understanding of the possible function(s) of the Pro‐Lys (PK) sequence at positions 3 and 4 of yeast Rpt1, we generated mutant strains expressing an Rpt1 allele that lacks this sequence. The absence of the PK sequence abolished N‐methylation, decreased cell growth, and increased sensitivity to stress. Our data suggest that N‐methylation of Rpt1 and/or its PK sequence might be important in cell growth or stress tolerance in yeast.  相似文献   

17.
The yeast (Saccharomyces cerevisiae) contains three N-acetyltransferases, NatA, NatB, and NatC, each of which acetylates proteins with different N-terminal regions. The 19S regulatory particle of the yeast 26S proteasome consists of 17 subunits, 12 of which are N-terminally modified. By using nat1, nat3, and mak3 deletion mutants, we found that 8 subunits, Rpt4, Rpt5, Rpt6, Rpn2, Rpn3, Rpn5, Rpn6, and Rpn8, were NatA substrates, and that 2 subunits, Rpt3 and Rpn11, were NatB substrates. Mass spectrometric analysis revealed that the initiator Met of Rpt2 precursor polypeptide was processed and a part of the mature Rpt2 was N-myristoylated. The crude extracts from the normal strain and the nat1 deletion mutant were similar in chymotrypsin-like activity in the presence of ATP in vitro and in the accumulation level of the 26S proteasome. These characteristics were different from those of the 20S proteasome: the chymotrypsin-like activity and accumulation level of 20S proteasome were appreciably higher from the nat1 deletion mutant than from the normal strain.  相似文献   

18.
Proteasomes consist of a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP), an α(7)β(7)β(7)α(7) structure. The RP recognizes substrates and translocates them into the CP for degradation. At the RP-CP interface, a heterohexameric Rpt ring joins to a heteroheptameric CP α ring. Rpt C termini insert individually into the α ring pockets to form a salt bridge with a pocket lysine residue. We report that substitutions of α pocket lysine residues produce an unexpected block to CP assembly, arising from a late stage defect in β ring assembly. Substitutions α5(K66A) and α6(K62A) resulted in abundant incorporation of immature CP β subunits, associated with a complete β ring, into proteasome holoenzymes. Incorporation of immature CP into the proteasome depended on a proteasome-associated protein, Ecm29. Using ump1 mutants, we identified Ecm29 as a potent negative regulator of RP assembly and confirmed our previous findings that proper RP assembly requires the CP. Ecm29 was enriched on proteasomes of pocket lysine mutants, as well as those of rpt4-Δ1 and rpt6-Δ1 mutants, in which the C-terminal residue, thought to contact the pocket lysine, is deleted. In both rpt6-Δ1 and α6(K62A) proteasomes, Ecm29 suppressed opening of the CP substrate translocation channel, which is gated through interactions between Rpt C termini and the α pockets. The ubiquitin ligase Hul5 was recruited to these proteasomes together with Ecm29. Proteasome remodeling through the addition of Ecm29 and Hul5 suggests a new layer of the proteasome stress response and may be a common response to structurally aberrant proteasomes or deficient proteasome function.  相似文献   

19.
The 26S proteasome plays a fundamental role in almost all eukaryotic cells, including vascular endothelial cells. However, it remains largely unknown how proteasome functionality is regulated in the vasculature. Endothelial nitric oxide (NO) synthase (eNOS)-derived NO is known to be essential to maintain endothelial homeostasis. The aim of the present study was to establish the connection between endothelial NO and 26S proteasome functionality in vascular endothelial cells. The 26S proteasome reporter protein levels, 26S proteasome activity, and the O-GlcNAcylation of Rpt2, a key subunit of the proteasome regulatory complex, were assayed in 26S proteasome reporter cells, human umbilical vein endothelial cells (HUVEC), and mouse aortic tissues isolated from 26S proteasome reporter and eNOS knockout mice. Like the other selective NO donors, NO derived from activated eNOS (by pharmacological and genetic approach) increased O-GlcNAc modification of Rpt2, reduced proteasome chymotrypsin-like activity, and caused 26S proteasome reporter protein accumulation. Conversely, inactivation of eNOS reversed all the effects. SiRNA knockdown of O-GlcNAc transferase (OGT), the key enzyme that catalyzes protein O-GlcNAcylation, abolished NO-induced effects. Consistently, adenoviral overexpression of O-GlcNAcase (OGA), the enzyme catalyzing the removal of the O-GlcNAc group, mimicked the effects of OGT knockdown. Finally, compared to eNOS wild type aortic tissues, 26S proteasome reporter mice lacking eNOS exhibited elevated 26S proteasome functionality in parallel with decreased Rpt2 O-GlcNAcylation, without changing the levels of Rpt2 protein. In conclusion, the eNOS-derived NO functions as a physiological suppressor of the 26S proteasome in vascular endothelial cells.  相似文献   

20.
Chuang SM  Madura K 《Genetics》2005,171(4):1477-1484
Surveillance mechanisms that monitor protein synthesis can promote rapid elimination of misfolded nascent proteins. We showed that the translation elongation factor eEF1A and the proteasome subunit Rpt1 play a central role in the translocation of nascent-damaged proteins to the proteasome. We show here that multiubiquitinated proteins, and the ubiquitin-conjugating (E2) enzyme Ubc4, are rapidly detected in the proteasome following translational damage. However, Ubc4 levels in the proteasome were reduced significantly in a strain that expressed a mutant Rpt1 subunit. Ubc4 and Ubc5 are functionally redundant E2 enzymes that represent ideal candidates for ubiquitinating damaged nascent proteins because they lack significant substrate specificity, are required for the degradation of bulk, damaged proteins, and contribute to cellular stress-tolerance mechanisms. In agreement with this hypothesis, we determined that ubc4Delta ubc5Delta is exceedingly sensitive to protein translation inhibitors. Collectively, these studies suggest a specific role for Ubc4 and Ubc5 in the degradation of cotranslationally damaged proteins that are targeted to the proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号